These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27306603)

  • 21. Current transients in single nanoparticle collision events.
    Xiao X; Fan FR; Zhou J; Bard AJ
    J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrocatalytic Amplification of Single Nanoparticle Collisions Using DNA-Modified Surfaces.
    Alligrant TM; Dasari R; Stevenson KJ; Crooks RM
    Langmuir; 2015 Oct; 31(42):11724-33. PubMed ID: 26457645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boron doped diamond ultramicroelectrodes: a generic platform for sensing single nanoparticle electrocatalytic collisions.
    Wakerley D; Güell AG; Hutton LA; Miller TS; Bard AJ; Macpherson JV
    Chem Commun (Camb); 2013 Jun; 49(50):5657-9. PubMed ID: 23680678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction.
    Xiang ZP; Deng HQ; Peljo P; Fu ZY; Wang SL; Mandler D; Sun GQ; Liang ZX
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3464-3468. PubMed ID: 29377523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot
    Ustarroz J; Kang M; Bullions E; Unwin PR
    Chem Sci; 2017 Mar; 8(3):1841-1853. PubMed ID: 28553474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction.
    Park JY; Kim KJ; Son H; Kwon SJ
    Nanomaterials (Basel); 2018 Oct; 8(11):. PubMed ID: 30373100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical detection and sizing of colloidal ZnO nanoparticles.
    Perera N; Karunathilake N; Chhetri P; Alpuche-Aviles MA
    Anal Chem; 2015 Jan; 87(1):777-84. PubMed ID: 25417747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of forced convection on the collision and interaction between nanoparticles and ultramicroelectrode.
    Jiang J; Huang X; Wang L
    J Colloid Interface Sci; 2016 Apr; 467():158-164. PubMed ID: 26802274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids.
    Ghosh S; Mashayekhi H; Bhowmik P; Xing B
    Langmuir; 2010 Jan; 26(2):873-9. PubMed ID: 19813721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of Molecular Structural Aspects of Gemini Surfactants in Reducing Nanoparticle-Nanoparticle Interactions.
    Kaur R; Singh K; Khullar P; Gupta A; Ahluwalia GK; Bakshi MS
    Langmuir; 2019 Nov; 35(46):14929-14938. PubMed ID: 31645104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
    Ghosh S; Mashayekhi H; Pan B; Bhowmik P; Xing B
    Langmuir; 2008 Nov; 24(21):12385-91. PubMed ID: 18823134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Snapshot of the Properties of Single Nanoparticles at the Moment of a Collision.
    Huang X; Deng H; Liu C; Jiang J; Zeng Q; Wang L
    Chemistry; 2016 Jul; 22(28):9523-7. PubMed ID: 27168168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observation of individual semiconducting nanoparticle collisions by stochastic photoelectrochemical currents.
    Fernando A; Parajuli S; Alpuche-Aviles MA
    J Am Chem Soc; 2013 Jul; 135(30):10894-7. PubMed ID: 23862766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.
    Klitzke S; Metreveli G; Peters A; Schaumann GE; Lang F
    Sci Total Environ; 2015 Dec; 535():54-60. PubMed ID: 25434472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.
    Gillich T; Acikgöz C; Isa L; Schlüter AD; Spencer ND; Textor M
    ACS Nano; 2013 Jan; 7(1):316-29. PubMed ID: 23214719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Critical island size, scaling, and ordering in colloidal nanoparticle self-assembly.
    Joshi CP; Shim Y; Bigioni TP; Amar JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032406. PubMed ID: 25314456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporally-Resolved Ultrafast Hydrogen Adsorption and Evolution on Single Platinum Nanoparticles.
    Defnet PA; Han C; Zhang B
    Anal Chem; 2019 Mar; 91(6):4023-4030. PubMed ID: 30785269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrokinetic characterization of superparamagnetic nanoparticle-aptamer conjugates: design of new highly specific probes for miniaturized molecular diagnostics.
    Girardot M; d'Orlyé F; Varenne A
    Anal Bioanal Chem; 2014 Feb; 406(4):1089-98. PubMed ID: 23925800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes.
    Ghosh S; Jiang W; McClements JD; Xing B
    Langmuir; 2011 Jul; 27(13):8036-43. PubMed ID: 21650201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrocatalytic amplification of nanoparticle collisions at electrodes modified with polyelectrolyte multilayer films.
    Castañeda AD; Alligrant TM; Loussaert JA; Crooks RM
    Langmuir; 2015 Jan; 31(2):876-85. PubMed ID: 25568965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.