These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27306642)

  • 1. Highly-branched mesoporous Au-Pd-Pt trimetallic nanoflowers blooming on reduced graphene oxide as an oxygen reduction electrocatalyst.
    Huang L; Han Y; Dong S
    Chem Commun (Camb); 2016 Jul; 52(56):8659-62. PubMed ID: 27306642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple one-pot aqueous synthesis of AuPd alloy nanocrystals/reduced graphene oxide as highly efficient and stable electrocatalyst for oxygen reduction and hydrogen evolution reactions.
    Lin XX; Zhang XF; Wang AJ; Fang KM; Yuan J; Feng JJ
    J Colloid Interface Sci; 2017 Aug; 499():128-137. PubMed ID: 28365438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot aqueous fabrication of reduced graphene oxide supported porous PtAg alloy nanoflowers to greatly boost catalytic performances for oxygen reduction and hydrogen evolution.
    Liu Q; He YM; Weng X; Wang AJ; Yuan PX; Fang KM; Feng JJ
    J Colloid Interface Sci; 2018 Mar; 513():455-463. PubMed ID: 29175739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot hydrothermal synthesis of Zinc ferrite/reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.
    Hong W; Li L; Xue R; Xu X; Wang H; Zhou J; Zhao H; Song Y; Liu Y; Gao J
    J Colloid Interface Sci; 2017 Jan; 485():175-182. PubMed ID: 27664525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.
    Wu Z; Lv Y; Xia Y; Webley PA; Zhao D
    J Am Chem Soc; 2012 Feb; 134(4):2236-45. PubMed ID: 22257228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled platinum nanoflowers on polydopamine-coated reduced graphene oxide for methanol oxidation and oxygen reduction reactions.
    Yu X; Wang H; Guo L; Wang L
    Chem Asian J; 2014 Nov; 9(11):3221-7. PubMed ID: 25236885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction.
    Yin H; Tang H; Wang D; Gao Y; Tang Z
    ACS Nano; 2012 Sep; 6(9):8288-97. PubMed ID: 22931045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts.
    Xu S; Yong L; Wu P
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):654-62. PubMed ID: 23323590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anchoring noble metal nanoparticles on CeO2 modified reduced graphene oxide nanosheets and their enhanced catalytic properties.
    Ji Z; Shen X; Xu Y; Zhu G; Chen K
    J Colloid Interface Sci; 2014 Oct; 432():57-64. PubMed ID: 25080384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction.
    Kakaei K; Balavandi A
    J Colloid Interface Sci; 2016 Feb; 463():46-54. PubMed ID: 26513736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of PdPt@Pt nanorings supported on reduced graphene oxide with enhanced electrocatalytic properties.
    Li SS; Lv JJ; Teng LN; Wang AJ; Chen JR; Feng JJ
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10549-55. PubMed ID: 24960067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions.
    Liu Q; Jin J; Zhang J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5002-8. PubMed ID: 23662625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot fabrication of reduced graphene oxide supported dendritic core-shell gold@gold-palladium nanoflowers for glycerol oxidation.
    Feng JJ; Chen SS; Chen XL; Zhang XF; Wang AJ
    J Colloid Interface Sci; 2018 Jan; 509():73-81. PubMed ID: 28886371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive electrochemical determination of Sunset Yellow based on the ultrafine Au-Pd and reduced graphene oxide nanocomposites.
    Wang J; Yang B; Zhang K; Bin D; Shiraishi Y; Yang P; Du Y
    J Colloid Interface Sci; 2016 Nov; 481():229-35. PubMed ID: 27475710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced electrocatalytic activity of Pt nanoparticles supported on functionalized graphene for methanol oxidation and oxygen reduction.
    Ma J; Wang L; Mu X; Cao Y
    J Colloid Interface Sci; 2015 Nov; 457():102-7. PubMed ID: 26164241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical immunosensor for detecting typical bladder cancer biomarker based on reduced graphene oxide-tetraethylene pentamine and trimetallic AuPdPt nanoparticles.
    Ma H; Zhang X; Li X; Li R; Du B; Wei Q
    Talanta; 2015 Oct; 143():77-82. PubMed ID: 26078131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.
    Yamauchi Y; Tonegawa A; Komatsu M; Wang H; Wang L; Nemoto Y; Suzuki N; Kuroda K
    J Am Chem Soc; 2012 Mar; 134(11):5100-9. PubMed ID: 22352760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pt@Au nanorods uniformly decorated on pyridyne cycloaddition graphene as a highly effective electrocatalyst for oxygen reduction.
    Zhong X; Yu H; Wang X; Liu L; Jiang Y; Wang L; Zhuang G; Chu Y; Li X; Wang JG
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13448-54. PubMed ID: 25102156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction.
    Ning R; Tian J; Asiri AM; Qusti AH; Al-Youbi AO; Sun X
    Langmuir; 2013 Oct; 29(43):13146-51. PubMed ID: 24117208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.