These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 27306691)
1. Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions. Mai S; Wang G; Wu P; Gu C; Liu H; Zhang J; Wang G Biotechnol Appl Biochem; 2017 Sep; 64(5):719-726. PubMed ID: 27306691 [TBL] [Abstract][Full Text] [Related]
2. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus. Wu P; Wang G; Wang G; Børresen BT; Liu H; Zhang J Microb Cell Fact; 2016 Jan; 15():8. PubMed ID: 26762531 [TBL] [Abstract][Full Text] [Related]
3. Fermentation of rice bran and defatted rice bran for butanol 5 production using clostridium beijerinckii NCIMB 8052. Lee J; Seo E; Kweon DH; Park K; Jin YS J Microbiol Biotechnol; 2009 May; 19(5):482-90. PubMed ID: 19494696 [TBL] [Abstract][Full Text] [Related]
4. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052. Liu ZY; Yao XQ; Zhang Q; Liu Z; Wang ZJ; Zhang YY; Li FL Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130305 [TBL] [Abstract][Full Text] [Related]
5. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Wen Z; Wu M; Lin Y; Yang L; Lin J; Cen P Microb Cell Fact; 2014 Jul; 13(1):92. PubMed ID: 25023325 [TBL] [Abstract][Full Text] [Related]
6. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance. Liu J; Guo T; Wang D; Xu J; Ying H Biotechnol Appl Biochem; 2016 Sep; 63(5):727-733. PubMed ID: 26201246 [TBL] [Abstract][Full Text] [Related]
7. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Li L; Ai H; Zhang S; Li S; Liang Z; Wu ZQ; Yang ST; Wang JF Bioresour Technol; 2013 Sep; 143():397-404. PubMed ID: 23819976 [TBL] [Abstract][Full Text] [Related]
8. Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Survase SA; Jurgens G; van Heiningen A; Granström T Appl Microbiol Biotechnol; 2011 Sep; 91(5):1305-13. PubMed ID: 21573939 [TBL] [Abstract][Full Text] [Related]
9. Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052. Zhang WL; Liu ZY; Liu Z; Li FL Lett Appl Microbiol; 2012 Sep; 55(3):240-6. PubMed ID: 22738279 [TBL] [Abstract][Full Text] [Related]
10. Biobutanol production from sugarcane bagasse by Clostridium beijerinckii strains. Narayanasamy S; Chan KL; Cai H; Abdul Razak AHB; Tay BK; Miao H Biotechnol Appl Biochem; 2020 Sep; 67(5):732-737. PubMed ID: 31758710 [TBL] [Abstract][Full Text] [Related]
11. Ex situ product recovery for enhanced butanol production by Clostridium beijerinckii. Lee SH; Eom MH; Choi JD; Kim S; Kim J; Shin YA; Kim KH Bioprocess Biosyst Eng; 2016 May; 39(5):695-702. PubMed ID: 26846537 [TBL] [Abstract][Full Text] [Related]
12. Enhanced butanol production by increasing NADH and ATP levels in Clostridium beijerinckii NCIMB 8052 by insertional inactivation of Cbei_4110. Liu J; Guo T; Wang D; Shen X; Liu D; Niu H; Liang L; Ying H Appl Microbiol Biotechnol; 2016 Jun; 100(11):4985-96. PubMed ID: 26830101 [TBL] [Abstract][Full Text] [Related]
13. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. Milne CB; Eddy JA; Raju R; Ardekani S; Kim PJ; Senger RS; Jin YS; Blaschek HP; Price ND BMC Syst Biol; 2011 Aug; 5():130. PubMed ID: 21846360 [TBL] [Abstract][Full Text] [Related]
14. Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol. Zhang Y; Ezeji TC J Ind Microbiol Biotechnol; 2014 Oct; 41(10):1505-16. PubMed ID: 25085743 [TBL] [Abstract][Full Text] [Related]
16. Investigation of availability of a high throughput screening method for predicting butanol solvent -producing ability of Clostridium beijerinckii. Su H; Zhu J; Liu G; Tan F BMC Microbiol; 2016 Jul; 16(1):160. PubMed ID: 27448996 [TBL] [Abstract][Full Text] [Related]
17. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260. Qureshi N; Singh V; Liu S; Ezeji TC; Saha BC; Cotta MA Bioresour Technol; 2014 Feb; 154():222-8. PubMed ID: 24398150 [TBL] [Abstract][Full Text] [Related]
18. Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii. Mu X; Sun W; Liu C; Wang H Biotechnol Lett; 2011 Aug; 33(8):1587-91. PubMed ID: 21424838 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production. Seo SO; Wang Y; Lu T; Jin YS; Blaschek HP Biotechnol Bioeng; 2017 Jan; 114(1):106-112. PubMed ID: 27474812 [TBL] [Abstract][Full Text] [Related]
20. Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Wang Y; Blaschek HP Bioresour Technol; 2011 Nov; 102(21):9985-90. PubMed ID: 21893411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]