These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27306824)

  • 21. Droplet impact on pillar-arrayed non-wetting surfaces.
    Wang LZ; Zhou A; Zhou JZ; Chen L; Yu YS
    Soft Matter; 2021 Jun; 17(24):5932-5940. PubMed ID: 34041518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces. Part I: Sliding Length and Maximum Spreading Diameter.
    Aboud DGK; Kietzig AM
    Langmuir; 2018 Aug; 34(34):9879-9888. PubMed ID: 30063139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Why Drops Bounce on Smooth Surfaces.
    Tadmor R; Yadav SB; Gulec S; Leh A; Dang L; N'guessan HE; Das R; Turmine M; Tadmor M
    Langmuir; 2018 Apr; 34(15):4695-4700. PubMed ID: 29510056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetries in the spread of drops impacting on hydrophobic micropillar arrays.
    Robson S; Willmott GR
    Soft Matter; 2016 May; 12(21):4853-65. PubMed ID: 27140067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the drop impact on moving hydrophilic and hydrophobic surfaces.
    Almohammadi H; Amirfazli A
    Soft Matter; 2017 Mar; 13(10):2040-2053. PubMed ID: 28198895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops by gravity.
    Extrand CW; Moon SI
    Langmuir; 2010 Nov; 26(22):17090-9. PubMed ID: 20964303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing the performance of superhydrophobic aluminum surfaces.
    Ruiz-Cabello FJM; Ibáñez-Ibáñez PF; Gómez-Lopera JF; Martínez-Aroza J; Cabrerizo-Vílchez M; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2017 Dec; 508():129-136. PubMed ID: 28822862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contact time of a bouncing drop.
    Richard D; Clanet C; Quéré D
    Nature; 2002 Jun; 417(6891):811. PubMed ID: 12075341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receding Phase and Rebound Behavior for Drop Impact onto an Ultrathin Film.
    Chen H; Chen N; Mozafari A; Amirfazli A
    Langmuir; 2021 Apr; 37(13):3849-3857. PubMed ID: 33760612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directional Droplet Transport Mediated by Circular Groove Arrays. Part II: Theory of Effect.
    Liu C; Legchenkova I; Han L; Ge W; Lv C; Feng S; Bormashenko E; Liu Y
    Langmuir; 2021 Feb; 37(5):1948-1953. PubMed ID: 33506681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is a Knowledge of Surface Topology and Contact Angles Enough to Define the Drop Impact Outcome?
    Malavasi I; Veronesi F; Caldarelli A; Zani M; Raimondo M; Marengo M
    Langmuir; 2016 Jun; 32(25):6255-62. PubMed ID: 27228028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth dynamics of water drops on a square-pattern rough hydrophobic surface.
    Narhe RD; Beysens DA
    Langmuir; 2007 Jun; 23(12):6486-9. PubMed ID: 17472400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation.
    Jo H; Hwang KW; Kim D; Kiyofumi M; Park HS; Kim MH; Ahn HS
    Sci Rep; 2015 Apr; 5():9901. PubMed ID: 25905817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Hybrid Laser Ablation and Silanization Process.
    Xia Z; Xiao Y; Yang Z; Li L; Wang S; Liu X; Tian Y
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30845671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.
    Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z
    Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heat exchange between a bouncing drop and a superhydrophobic substrate.
    Shiri S; Bird JC
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6930-6935. PubMed ID: 28630306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces.
    Dorrer C; Rühe J
    Langmuir; 2007 Mar; 23(7):3820-4. PubMed ID: 17311432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.