BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 27307068)

  • 1. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis.
    Razzak SA; Ali SA; Hossain MM; Mouanda AN
    Bioprocess Biosyst Eng; 2016 Nov; 39(11):1651-8. PubMed ID: 27307068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.
    Adamczyk M; Lasek J; Skawińska A
    Appl Biochem Biotechnol; 2016 Aug; 179(7):1248-61. PubMed ID: 27052208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations.
    Ortiz Montoya EY; Casazza AA; Aliakbarian B; Perego P; Converti A; de Carvalho JC
    Biotechnol Prog; 2014; 30(4):916-22. PubMed ID: 24532479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.
    Münkel R; Schmid-Staiger U; Werner A; Hirth T
    Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Temperature and Other Operational Parameters on Chlorella vulgaris Mass Cultivation in a Simple and Low-Cost Column Photobioreactor.
    Bamba BS; Lozano P; Adjé F; Ouattara A; Vian MA; Tranchant C; Lozano Y
    Appl Biochem Biotechnol; 2015 Sep; 177(2):389-406. PubMed ID: 26189103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of CO₂ bio-mitigation by Chlorella vulgaris.
    Anjos M; Fernandes BD; Vicente AA; Teixeira JA; Dragone G
    Bioresour Technol; 2013 Jul; 139():149-54. PubMed ID: 23648764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of CO₂ input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors.
    Guo Z; Phooi WBA; Lim ZJ; Tong YW
    Bioresour Technol; 2015 Jun; 186():238-245. PubMed ID: 25817035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus.
    Chaudhary R; Dikshit AK; Tong YW
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20399-20406. PubMed ID: 28656576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor.
    Farrelly DJ; Brennan L; Everard CD; McDonnell KP
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3157-64. PubMed ID: 24162085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor.
    Chiu SY; Kao CY; Chen CH; Kuan TC; Ong SC; Lin CS
    Bioresour Technol; 2008 Jun; 99(9):3389-96. PubMed ID: 17904359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.
    Chang HX; Huang Y; Fu Q; Liao Q; Zhu X
    Bioresour Technol; 2016 Apr; 206():231-238. PubMed ID: 26866758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Sadeghizadeh A; Farhad Dad F; Moghaddasi L; Rahimi R
    Bioresour Technol; 2017 Nov; 243():441-447. PubMed ID: 28688327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar-stimulated CO
    Fu W; Gudmundsson S; Wichuk K; Palsson S; Palsson BO; Salehi-Ashtiani K; Brynjólfsson S
    Sci Total Environ; 2019 Mar; 654():275-283. PubMed ID: 30445327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring an in situ LED-illuminated isothermal micro-calorimetric method to investigating the thermodynamic behavior of Chlorella vulgaris during CO
    Russel M; Liu C; Alam A; Wang F; Yao J; Daroch M; Shah MR; Wang Z
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18519-18527. PubMed ID: 29700746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel bioconversions of municipal effluent and CO₂ into protein riched Chlorella vulgaris biomass.
    Li C; Yang H; Li Y; Cheng L; Zhang M; Zhang L; Wang W
    Bioresour Technol; 2013 Mar; 132():171-7. PubMed ID: 23399495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs.
    Douskova I; Doucha J; Livansky K; Machat J; Novak P; Umysova D; Zachleder V; Vitova M
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):179-85. PubMed ID: 19096837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.