These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 27307070)
1. Using 300 Pretreatment Shock Waves in a Voltage Ramping Protocol Can Significantly Reduce Tissue Injury During Extracorporeal Shock Wave Lithotripsy. Connors BA; Evan AP; Handa RK; Blomgren PM; Johnson CD; Liu Z; Lingeman JE J Endourol; 2016 Sep; 30(9):1004-8. PubMed ID: 27307070 [TBL] [Abstract][Full Text] [Related]
2. Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy. Handa RK; McAteer JA; Connors BA; Liu Z; Lingeman JE; Evan AP BJU Int; 2012 Dec; 110(11 Pt C):E1041-7. PubMed ID: 22612388 [TBL] [Abstract][Full Text] [Related]
3. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. Connors BA; Evan AP; Blomgren PM; Handa RK; Willis LR; Gao S BJU Int; 2009 Jan; 103(1):104-7. PubMed ID: 18680494 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor. Connors BA; McAteer JA; Evan AP; Blomgren PM; Handa RK; Johnson CD; Gao S; Pishchalnikov YA; Lingeman JE BJU Int; 2012 Nov; 110(9):1376-85. PubMed ID: 22519983 [TBL] [Abstract][Full Text] [Related]
5. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. Handa RK; Bailey MR; Paun M; Gao S; Connors BA; Willis LR; Evan AP BJU Int; 2009 May; 103(9):1270-4. PubMed ID: 19154458 [TBL] [Abstract][Full Text] [Related]
6. Renal Protection Phenomenon Observed in a Porcine Model After Electromagnetic Lithotripsy Using a Treatment Pause. Connors BA; Gardner T; Liu Z; Lingeman JE; Williams JC J Endourol; 2021 May; 35(5):682-686. PubMed ID: 33472540 [No Abstract] [Full Text] [Related]
7. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871 [TBL] [Abstract][Full Text] [Related]
8. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. Willis LR; Evan AP; Connors BA; Handa RK; Blomgren PM; Lingeman JE J Am Soc Nephrol; 2006 Mar; 17(3):663-73. PubMed ID: 16452495 [TBL] [Abstract][Full Text] [Related]
9. Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig. Handa RK; McAteer JA; Willis LR; Pishchalnikov YA; Connors BA; Ying J; Lingeman JE; Evan AP BJU Int; 2007 May; 99(5):1134-42. PubMed ID: 17309558 [TBL] [Abstract][Full Text] [Related]
14. Shock wave lithotripsy does not impair renal function in a Swine model of metabolic syndrome. Handa RK; Johnson CD; Connors BA; Evan AP; Phillips CL; Liu Z J Endourol; 2015 Apr; 29(4):468-73. PubMed ID: 25285417 [TBL] [Abstract][Full Text] [Related]
15. Pretreatment with low-energy shock waves reduces the renal oxidative stress and inflammation caused by high-energy shock wave lithotripsy. Clark DL; Connors BA; Handa RK; Evan AP Urol Res; 2011 Dec; 39(6):437-42. PubMed ID: 21387182 [TBL] [Abstract][Full Text] [Related]
16. Preliminary Report on Stone Breakage and Lesion Size Produced by a New Extracorporeal Electrohydraulic (Sparker Array) Discharge Device. Connors BA; Schaefer RB; Gallagher JJ; Johnson CD; Li G; Handa RK; Evan AP Urology; 2018 Jun; 116():213-217. PubMed ID: 29596866 [TBL] [Abstract][Full Text] [Related]