These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27307079)

  • 1. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.
    Zhou T; Lou J; Zhang Y; Song H; Huang F
    Phys Chem Chem Phys; 2016 Jul; 18(26):17627-45. PubMed ID: 27307079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shock-Induced Hot Spot Formation and Spalling in 1,3,5-trinitroperhydro-1,3,5-triazine Containing a Cube Void.
    Zhang Y; Liu H; Yang Z; Li Q; He Y
    ACS Omega; 2019 May; 4(5):8031-8038. PubMed ID: 31459892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot spot formation and initial chemical reaction of PETN containing nanoscale spherical voids under high shock loading.
    Zhang Y; Wang T; He Y
    RSC Adv; 2022 Apr; 12(18):11060-11074. PubMed ID: 35425036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing Hot Spot Formation in Individual Explosive Crystals Under Shock Compression.
    Johnson BP; Zhou X; Ihara H; Dlott DD
    J Phys Chem A; 2020 Jun; 124(23):4646-4653. PubMed ID: 32432865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal behavior of void collapse in shocked solids.
    Hatano T
    Phys Rev Lett; 2004 Jan; 92(1):015503. PubMed ID: 14753998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shock Pressure Dependence of Hot Spots in a Model Plastic-Bonded Explosive.
    Johnson BP; Zhou X; Dlott DD
    J Phys Chem A; 2022 Jan; 126(1):145-154. PubMed ID: 34982934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics analysis of the transient temperature increase at void locations in shocked materials: RDX and Cu.
    Warrier M; Pahari P; Chaturvedi S
    J Mol Model; 2015 Aug; 21(8):192. PubMed ID: 26162694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic mechanism for hot spot initiation.
    Holian BL; Germann TC; Maillet JB; White CT
    Phys Rev Lett; 2002 Dec; 89(28 Pt 1):285501. PubMed ID: 12513155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of void defects in the energetic material HMX.
    Duan XH; Li WP; Pei CH; Zhou XQ
    J Mol Model; 2013 Sep; 19(9):3893-9. PubMed ID: 23828248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.
    Zhou T; Song H; Liu Y; Huang F
    Phys Chem Chem Phys; 2014 Jul; 16(27):13914-31. PubMed ID: 24899535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic shock sensitivity in a single crystal δ-cyclotetramethylene tetranitramine: a reactive molecular dynamics study.
    Zhou TT; Lou JF; Song HJ; Huang FL
    Phys Chem Chem Phys; 2015 Mar; 17(12):7924-35. PubMed ID: 25721038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of shock loading of nearly fully dense granular Ni-Al composites.
    Xiong Y; Li X; Xiao S; Deng H; Huang B; Zhu W; Hu W
    Phys Chem Chem Phys; 2019 Sep; 21(36):20252-20261. PubMed ID: 31490472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations.
    Ge NN; Wei YK; Ji GF; Chen XR; Zhao F; Wei DQ
    J Phys Chem B; 2012 Nov; 116(46):13696-704. PubMed ID: 23078752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent shock response mechanisms in nanogranular RDX: a reactive molecular dynamics study.
    Huang X; Ji C; Ma X; Hao L; Guo F; Yang G; Huang J; Wen Y; Qiao Z
    Phys Chem Chem Phys; 2024 Sep; 26(35):23189-23200. PubMed ID: 39189793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives.
    Mei Z; An Q; Zhao FQ; Xu SY; Ju XH
    Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and dislocation studies of β-HMX.
    Gallagher HG; Sherwood JN; Vrcelj RM
    Chem Cent J; 2014; 8():75. PubMed ID: 25657816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Chemical Reaction Process after Pentaerythritol Tetranitrate Hot Spot Ignition.
    Zhang Y; Li Q; He Y
    ACS Omega; 2020 Nov; 5(45):28984-28991. PubMed ID: 33225129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Temperature on Void Collapse in Single Crystal Nickel under Hydrostatic Compression.
    Prasad MRG; Neogi A; Vajragupta N; Janisch R; Hartmaier A
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34063202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of dislocation and twinning behavior in HMX under high-velocity impact employing molecular dynamics simulations.
    Yang CS; Zhang SH
    J Mol Model; 2024 Jan; 30(2):50. PubMed ID: 38267739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid materials degradation induced by surfaces and voids: ab initio modeling of β-octatetramethylene [corrected] tetranitramine.
    Sharia O; Kuklja MM
    J Am Chem Soc; 2012 Jul; 134(28):11815-20. PubMed ID: 22703290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.