BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27307513)

  • 1. Intermittent turbulence in flowing bacterial suspensions.
    Secchi E; Rusconi R; Buzzaccaro S; Salek MM; Smriga S; Piazza R; Stocker R
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27307513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport powered by bacterial turbulence.
    Kaiser A; Peshkov A; Sokolov A; ten Hagen B; Löwen H; Aranson IS
    Phys Rev Lett; 2014 Apr; 112(15):158101. PubMed ID: 24785075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid dynamics of bacterial turbulence.
    Dunkel J; Heidenreich S; Drescher K; Wensink HH; Bär M; Goldstein RE
    Phys Rev Lett; 2013 May; 110(22):228102. PubMed ID: 23767750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vortex dynamics and Lagrangian statistics in a model for active turbulence.
    James M; Wilczek M
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):21. PubMed ID: 29435676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring order in active turbulence: Geometric rule and pairing order transition in confined bacterial vortices.
    Beppu K; Maeda YT
    Biophys Physicobiol; 2022; 19():1-9. PubMed ID: 35797406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confinement stabilizes a bacterial suspension into a spiral vortex.
    Wioland H; Woodhouse FG; Dunkel J; Kessler JO; Goldstein RE
    Phys Rev Lett; 2013 Jun; 110(26):268102. PubMed ID: 23848925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective swimming and the dynamics of bacterial turbulence.
    Wolgemuth CW
    Biophys J; 2008 Aug; 95(4):1564-74. PubMed ID: 18469071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical properties of collective motion in suspensions of bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2012 Dec; 109(24):248109. PubMed ID: 23368392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meso-scale turbulence in living fluids.
    Wensink HH; Dunkel J; Heidenreich S; Drescher K; Goldstein RE; Löwen H; Yeomans JM
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14308-13. PubMed ID: 22908244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active depinning of bacterial droplets: The collective surfing of
    Hennes M; Tailleur J; Charron G; Daerr A
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5958-5963. PubMed ID: 28536199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge current and pairing order transition in chiral bacterial vortices.
    Beppu K; Izri Z; Sato T; Yamanishi Y; Sumino Y; Maeda YT
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34561308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of intermittency in zooplankton behaviour in turbulence.
    Michalec FG; Schmitt FG; Souissi S; Holzner M
    Eur Phys J E Soft Matter; 2015 Oct; 38(10):108. PubMed ID: 26490249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of lagrangian intermittency in drift-wave turbulence.
    Kadoch B; Bos WJ; Schneider K
    Phys Rev Lett; 2010 Oct; 105(14):145001. PubMed ID: 21230837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic length-scale selection in microswimmer suspensions.
    Heidenreich S; Dunkel J; Klapp SH; Bär M
    Phys Rev E; 2016 Aug; 94(2-1):020601. PubMed ID: 27627229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point-vortex model for Lagrangian intermittency in turbulence.
    Rast MP; Pinton JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046314. PubMed ID: 19518340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittency measurement in two-dimensional bacterial turbulence.
    Qiu X; Ding L; Huang Y; Chen M; Lu Z; Liu Y; Zhou Q
    Phys Rev E; 2016 Jun; 93(6):062226. PubMed ID: 27415272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swarming bacteria migrate by Lévy Walk.
    Ariel G; Rabani A; Benisty S; Partridge JD; Harshey RM; Be'er A
    Nat Commun; 2015 Sep; 6():8396. PubMed ID: 26403719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mixing and spatial instability in concentrated bacterial suspensions.
    Sokolov A; Goldstein RE; Feldchtein FI; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031903. PubMed ID: 19905142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Transition to Large Scale Coherent Structures in Two-Dimensional Active Matter Turbulence.
    Linkmann M; Boffetta G; Marchetti MC; Eckhardt B
    Phys Rev Lett; 2019 May; 122(21):214503. PubMed ID: 31283308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering bacterial vortex lattice via direct laser lithography.
    Nishiguchi D; Aranson IS; Snezhko A; Sokolov A
    Nat Commun; 2018 Oct; 9(1):4486. PubMed ID: 30367049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.