These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27307623)

  • 1. A convex optimization approach for identification of human tissue-specific interactomes.
    Mohammadi S; Grama A
    Bioinformatics; 2016 Jun; 32(12):i243-i252. PubMed ID: 27307623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes.
    Basha O; Argov CM; Artzy R; Zoabi Y; Hekselman I; Alfandari L; Chalifa-Caspi V; Yeger-Lotem E
    Bioinformatics; 2020 May; 36(9):2821-2828. PubMed ID: 31960892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of housekeeping and tissue-specific driver nodes in human protein interaction networks.
    Zhang XF; Ou-Yang L; Dai DQ; Wu MY; Zhu Y; Yan H
    BMC Bioinformatics; 2016 Sep; 17(1):358. PubMed ID: 27612563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genes and pathways involved in kidney renal clear cell carcinoma.
    Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M
    BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational framework for the prioritization of disease-gene candidates.
    Browne F; Wang H; Zheng H
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S2. PubMed ID: 26330267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MGFM: a novel tool for detection of tissue and cell specific marker genes from microarray gene expression data.
    El Amrani K; Stachelscheid H; Lekschas F; Kurtz A; Andrade-Navarro MA
    BMC Genomics; 2015 Aug; 16(1):645. PubMed ID: 26314578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiSGeD: a database for tissue-specific genes.
    Xiao SJ; Zhang C; Zou Q; Ji ZL
    Bioinformatics; 2010 May; 26(9):1273-5. PubMed ID: 20223836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State of the Interactomes: an evaluation of molecular networks for generating biological insights.
    Wright SN; Colton S; Schaffer LV; Pillich RT; Churas C; Pratt D; Ideker T
    bioRxiv; 2024 Apr; ():. PubMed ID: 38746239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated interactions database: tissue-specific view of the human and model organism interactomes.
    Kotlyar M; Pastrello C; Sheahan N; Jurisica I
    Nucleic Acids Res; 2016 Jan; 44(D1):D536-41. PubMed ID: 26516188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing confidence of protein interactomes using network topological metrics.
    Chen J; Hsu W; Lee ML; Ng SK
    Bioinformatics; 2006 Aug; 22(16):1998-2004. PubMed ID: 16787971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of scaffold proteins based on protein interaction and domain architectures.
    Oh K; Yi GS
    BMC Bioinformatics; 2016 Jul; 17 Suppl 6(Suppl 6):220. PubMed ID: 27490120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling of differentially expressed genes in adipose tissues of multiple symmetric lipomatosis.
    Chen K; Wang L; Yang W; Wang C; Hu G; Mo Z
    Mol Med Rep; 2017 Nov; 16(5):6570-6579. PubMed ID: 28901441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse multi-view matrix factorization: a multivariate approach to multiple tissue comparisons.
    Wang Z; Yuan W; Montana G
    Bioinformatics; 2015 Oct; 31(19):3163-71. PubMed ID: 26048599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scope and limitations of yeast as a model organism for studying human tissue-specific pathways.
    Mohammadi S; Saberidokht B; Subramaniam S; Grama A
    BMC Syst Biol; 2015 Dec; 9():96. PubMed ID: 26714768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional annotation of regulatory pathways.
    Pandey J; Koyutürk M; Kim Y; Szpankowski W; Subramaniam S; Grama A
    Bioinformatics; 2007 Jul; 23(13):i377-86. PubMed ID: 17646320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses.
    Jia Y; Nie K; Li J; Liang X; Zhang X
    Mol Med Rep; 2016 Nov; 14(5):4844-4848. PubMed ID: 27748870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knowledge enrichment analysis for human tissue-specific genes uncover new biological insights.
    Gong XJ; Yu H; Yang CB; Li YF
    J Integr Bioinform; 2012 Jul; 9(2):194. PubMed ID: 22773159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.