These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27307627)

  • 1. Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction.
    Tabei Y; Yamanishi Y; Kotera M
    Bioinformatics; 2016 Jun; 32(12):i278-i287. PubMed ID: 27307627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets.
    Kotera M; Tabei Y; Yamanishi Y; Tokimatsu T; Goto S
    Bioinformatics; 2013 Jul; 29(13):i135-44. PubMed ID: 23812977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolome-scale prediction of intermediate compounds in multistep metabolic pathways with a recursive supervised approach.
    Kotera M; Tabei Y; Yamanishi Y; Muto A; Moriya Y; Tokimatsu T; Goto S
    Bioinformatics; 2014 Jun; 30(12):i165-74. PubMed ID: 24931980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolome-scale de novo pathway reconstruction using regioisomer-sensitive graph alignments.
    Yamanishi Y; Tabei Y; Kotera M
    Bioinformatics; 2015 Jun; 31(12):i161-70. PubMed ID: 26072478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis.
    Kotera M; Goto S
    Biophys Physicobiol; 2016; 13():195-205. PubMed ID: 27924274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PathPred: an enzyme-catalyzed metabolic pathway prediction server.
    Moriya Y; Shigemizu D; Hattori M; Tokimatsu T; Kotera M; Goto S; Kanehisa M
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W138-43. PubMed ID: 20435670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds.
    Nakamura M; Hachiya T; Saito Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S8. PubMed ID: 23282285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genome-scale metabolic network alignment method within a hypergraph-based framework using a rotational tensor-vector product.
    Shen T; Zhang Z; Chen Z; Gu D; Liang S; Xu Y; Li R; Wei Y; Liu Z; Yi Y; Xie X
    Sci Rep; 2018 Nov; 8(1):16376. PubMed ID: 30401914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised enzyme network inference from the integration of genomic data and chemical information.
    Yamanishi Y; Vert JP; Kanehisa M
    Bioinformatics; 2005 Jun; 21 Suppl 1():i468-77. PubMed ID: 15961492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.
    Oh M; Yamada T; Hattori M; Goto S; Kanehisa M
    J Chem Inf Model; 2007; 47(4):1702-12. PubMed ID: 17516640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of reaction organization patterns that naturally cluster enzymatic transformations.
    Vazquez-Hernandez C; Loza A; Peguero-Sanchez E; Segovia L; Gutierrez-Rios RM
    BMC Syst Biol; 2018 May; 12(1):63. PubMed ID: 29848336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering specialized metabolic pathways--is there a room for enzyme improvements?
    Bar-Even A; Salah Tawfik D
    Curr Opin Biotechnol; 2013 Apr; 24(2):310-9. PubMed ID: 23102865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale models of plant metabolism.
    Simons M; Misra A; Sriram G
    Methods Mol Biol; 2014; 1083():213-30. PubMed ID: 24218218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks.
    Steffensen JL; Dufault-Thompson K; Zhang Y
    PLoS One; 2018; 13(2):e0192891. PubMed ID: 29447218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematizing the generation of missing metabolic knowledge.
    Orth JD; Palsson BØ
    Biotechnol Bioeng; 2010 Oct; 107(3):403-12. PubMed ID: 20589842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Application of the Weighted k-Partite Graph Problem to the Multiple Alignment for Metabolic Pathways.
    Chen W; Hendrix W; Samatova NF
    J Comput Biol; 2017 Dec; 24(12):1195-1211. PubMed ID: 28891687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient reconstruction of metabolic pathways by bidirectional chemical search.
    Félix L; Rosselló F; Valiente G
    Bull Math Biol; 2009 Apr; 71(3):750-69. PubMed ID: 19101770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NICEpath: Finding metabolic pathways in large networks through atom-conserving substrate-product pairs.
    Hafner J; Hatzimanikatis V
    Bioinformatics; 2021 Oct; 37(20):3560-3568. PubMed ID: 34003971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction.
    Dhanasekaran AR; Pearson JL; Ganesan B; Weimer BC
    BMC Bioinformatics; 2015 Feb; 16(1):62. PubMed ID: 25887958
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.