These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27307627)

  • 21. Engineering specialized metabolic pathways--is there a room for enzyme improvements?
    Bar-Even A; Salah Tawfik D
    Curr Opin Biotechnol; 2013 Apr; 24(2):310-9. PubMed ID: 23102865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolomic approaches for enzyme function and pathway discovery in bacteria.
    Hubert CB; de Carvalho LPS
    Methods Enzymol; 2022; 665():29-47. PubMed ID: 35379439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition.
    Chen L; Feng KY; Cai YD; Chou KC; Li HP
    BMC Bioinformatics; 2010 May; 11():293. PubMed ID: 20513238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The strength of chemical linkage as a criterion for pruning metabolic graphs.
    Zhou W; Nakhleh L
    Bioinformatics; 2011 Jul; 27(14):1957-63. PubMed ID: 21551141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks.
    Steffensen JL; Dufault-Thompson K; Zhang Y
    PLoS One; 2018; 13(2):e0192891. PubMed ID: 29447218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Application of the Weighted k-Partite Graph Problem to the Multiple Alignment for Metabolic Pathways.
    Chen W; Hendrix W; Samatova NF
    J Comput Biol; 2017 Dec; 24(12):1195-1211. PubMed ID: 28891687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-scale models of plant metabolism.
    Simons M; Misra A; Sriram G
    Methods Mol Biol; 2014; 1083():213-30. PubMed ID: 24218218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction.
    Dhanasekaran AR; Pearson JL; Ganesan B; Weimer BC
    BMC Bioinformatics; 2015 Feb; 16(1):62. PubMed ID: 25887958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical and genomic evolution of enzyme-catalyzed reaction networks.
    Kanehisa M
    FEBS Lett; 2013 Sep; 587(17):2731-7. PubMed ID: 23816707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of oxidoreductase-catalyzed reactions based on atomic properties of metabolites.
    Mu F; Unkefer PJ; Unkefer CJ; Hlavacek WS
    Bioinformatics; 2006 Dec; 22(24):3082-8. PubMed ID: 17060354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.
    Prigent S; Frioux C; Dittami SM; Thiele S; Larhlimi A; Collet G; Gutknecht F; Got J; Eveillard D; Bourdon J; Plewniak F; Tonon T; Siegel A
    PLoS Comput Biol; 2017 Jan; 13(1):e1005276. PubMed ID: 28129330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient searching and annotation of metabolic networks using chemical similarity.
    Pertusi DA; Stine AE; Broadbelt LJ; Tyo KE
    Bioinformatics; 2015 Apr; 31(7):1016-24. PubMed ID: 25417203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CAMPways: constrained alignment framework for the comparative analysis of a pair of metabolic pathways.
    Abaka G; Bıyıkoğlu T; Erten C
    Bioinformatics; 2013 Jul; 29(13):i145-53. PubMed ID: 23812978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MLGL-MP: a Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction.
    Du BX; Zhao PC; Zhu B; Yiu SM; Nyamabo AK; Yu H; Shi JY
    Bioinformatics; 2022 Jun; 38(Suppl 1):i325-i332. PubMed ID: 35758801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks.
    Eguchi R; Ono N; Hirai Morita A; Katsuragi T; Nakamura S; Huang M; Altaf-Ul-Amin M; Kanaya S
    BMC Bioinformatics; 2019 Jul; 20(1):380. PubMed ID: 31288752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Network context and selection in the evolution to enzyme specificity.
    Nam H; Lewis NE; Lerman JA; Lee DH; Chang RL; Kim D; Palsson BO
    Science; 2012 Aug; 337(6098):1101-4. PubMed ID: 22936779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tracing metabolic pathways from enzyme data.
    McDonald AG; Tipton KF; Boyce S
    Biochim Biophys Acta; 2009 Sep; 1794(9):1364-71. PubMed ID: 19563919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs.
    Yamanishi Y; Hattori M; Kotera M; Goto S; Kanehisa M
    Bioinformatics; 2009 Jun; 25(12):i179-86. PubMed ID: 19477985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrative approach towards completing genome-scale metabolic networks.
    Christian N; May P; Kempa S; Handorf T; Ebenhöh O
    Mol Biosyst; 2009 Dec; 5(12):1889-903. PubMed ID: 19763335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.