These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 27307636)
1. DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences. Meng F; Kurgan L Bioinformatics; 2016 Jun; 32(12):i341-i350. PubMed ID: 27307636 [TBL] [Abstract][Full Text] [Related]
2. APOD: accurate sequence-based predictor of disordered flexible linkers. Peng Z; Xing Q; Kurgan L Bioinformatics; 2020 Dec; 36(Suppl_2):i754-i761. PubMed ID: 33381830 [TBL] [Abstract][Full Text] [Related]
3. High-throughput prediction of disordered moonlighting regions in protein sequences. Meng F; Kurgan L Proteins; 2018 Oct; 86(10):1097-1110. PubMed ID: 30099775 [TBL] [Abstract][Full Text] [Related]
4. TransDFL: Identification of Disordered Flexible Linkers in Proteins by Transfer Learning. Pang Y; Liu B Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):359-369. PubMed ID: 36272675 [TBL] [Abstract][Full Text] [Related]
5. Genome-scale prediction of proteins with long intrinsically disordered regions. Peng Z; Mizianty MJ; Kurgan L Proteins; 2014 Jan; 82(1):145-58. PubMed ID: 23798504 [TBL] [Abstract][Full Text] [Related]
6. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. Fan X; Kurgan L J Biomol Struct Dyn; 2014; 32(3):448-64. PubMed ID: 23534882 [TBL] [Abstract][Full Text] [Related]
7. Intrinsic disorder in the Protein Data Bank. Le Gall T; Romero PR; Cortese MS; Uversky VN; Dunker AK J Biomol Struct Dyn; 2007 Feb; 24(4):325-42. PubMed ID: 17206849 [TBL] [Abstract][Full Text] [Related]
8. Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Mizianty MJ; Stach W; Chen K; Kedarisetti KD; Disfani FM; Kurgan L Bioinformatics; 2010 Sep; 26(18):i489-96. PubMed ID: 20823312 [TBL] [Abstract][Full Text] [Related]
9. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins. Zhang J; Ghadermarzi S; Kurgan L Bioinformatics; 2020 Sep; 36(18):4729-4738. PubMed ID: 32860044 [TBL] [Abstract][Full Text] [Related]
11. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Disfani FM; Hsu WL; Mizianty MJ; Oldfield CJ; Xue B; Dunker AK; Uversky VN; Kurgan L Bioinformatics; 2012 Jun; 28(12):i75-83. PubMed ID: 22689782 [TBL] [Abstract][Full Text] [Related]
12. Sequence-based prediction of protein crystallization, purification and production propensity. Mizianty MJ; Kurgan L Bioinformatics; 2011 Jul; 27(13):i24-33. PubMed ID: 21685077 [TBL] [Abstract][Full Text] [Related]
13. Quality assessment for the putative intrinsic disorder in proteins. Hu G; Wu Z; Oldfield CJ; Wang C; Kurgan L Bioinformatics; 2019 May; 35(10):1692-1700. PubMed ID: 30329008 [TBL] [Abstract][Full Text] [Related]
14. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information. Peng Z; Li Z; Meng Q; Zhao B; Kurgan L Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458437 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind. Peng Z; Wang C; Uversky VN; Kurgan L Methods Mol Biol; 2017; 1484():187-203. PubMed ID: 27787828 [TBL] [Abstract][Full Text] [Related]
16. DisoLipPred: accurate prediction of disordered lipid-binding residues in protein sequences with deep recurrent networks and transfer learning. Katuwawala A; Zhao B; Kurgan L Bioinformatics; 2021 Dec; 38(1):115-124. PubMed ID: 34487138 [TBL] [Abstract][Full Text] [Related]
17. Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors. Chen K; Mizianty MJ; Kurgan L Bioinformatics; 2012 Feb; 28(3):331-41. PubMed ID: 22130595 [TBL] [Abstract][Full Text] [Related]
19. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Zhang J; Kurgan L Bioinformatics; 2019 Jul; 35(14):i343-i353. PubMed ID: 31510679 [TBL] [Abstract][Full Text] [Related]
20. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments. Zheng C; Kurgan L BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]