These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27308110)

  • 41. Neutron measurements at the ELISE neutral beam test facility and implications for neutron based diagnostics at SPIDER.
    Feng S; Nocente M; Wünderlich D; Bonomo F; Croci G; Fantz U; Heinemann B; Kraus W; Mario I; Muraro A; Pasqualotto R; Rebai M; Tardocchi M; Gorini G
    Rev Sci Instrum; 2018 Oct; 89(10):10I139. PubMed ID: 30399769
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characteristics of neutron beam generated by 500 MeV proton beam.
    Inada T; Hayakawa Y; Tada J; Kubota N; Hiraoka T; Sato S
    Int J Radiat Oncol Biol Phys; 1993 Feb; 25(3):499-504. PubMed ID: 8382201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Designing a new graphite illuminator for imaging facility of INUS to improve neutron beam uniformity and intensity.
    Nazemi E; Dinca M; Movafeghi A; Rokrok B; Dastjerdi MHC
    Appl Radiat Isot; 2019 Jun; 148():204-212. PubMed ID: 30981125
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.
    Liu HB; Brugger RM; Rorer DC; Tichler PR; Hu JP
    Med Phys; 1994 Oct; 21(10):1627-31. PubMed ID: 7869995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials.
    Kasatov D; Makarov A; Shchudlo I; Taskaev S
    Appl Radiat Isot; 2015 Dec; 106():38-40. PubMed ID: 26298434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parity-Violating Neutron Spin Rotation in a Liquid Parahydrogen Target.
    Markoff DM
    J Res Natl Inst Stand Technol; 2005; 110(3):209-13. PubMed ID: 27308123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.
    Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ
    Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy and fluence calibration of the neutron spectrometer ROSPEC at the IRSN AMANDE facility between 70 keV and 4.5 MeV.
    Benmosbah M; Asselineau B
    Radiat Prot Dosimetry; 2009 Jul; 135(3):154-61. PubMed ID: 19509004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Secondary neutron dose during proton therapy using spot scanning.
    Schneider U; Agosteo S; Pedroni E; Besserer J
    Int J Radiat Oncol Biol Phys; 2002 May; 53(1):244-51. PubMed ID: 12007965
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neutron Metrology in the United States-Where We've Been, Where We Are Now and What We Need to Do Moving Forward.
    Schauer DA
    Health Phys; 2017 Nov; 113(5):347-352. PubMed ID: 28961582
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of measured parameters from a 24-keV and a broad spectrum epithermal neutron beam for neutron capture therapy: an identification of consequential parameters.
    Fairchild RG; Saraf SK; Kalef-Ezra J; Laster BH
    Med Phys; 1990; 17(6):1045-52. PubMed ID: 2280734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of the potential therapeutic gain of p(66)/Be neutrons and d(14)/Be neutrons.
    Slabbert JP; Theron T; Zolzer F; Streffer C; Bohm L
    Int J Radiat Oncol Biol Phys; 2000 Jul; 47(4):1059-65. PubMed ID: 10863079
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.
    Yonai S; Matsufuji N; Kanai T
    Med Phys; 2009 Oct; 36(10):4830-9. PubMed ID: 19928113
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biological dosimetry for epithermal neutron beams.
    White SM; Held KD; Palmer MR; Yanch JC
    Radiat Res; 2001 Jun; 155(6):778-84. PubMed ID: 11352759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Double-Focusing Thermal Triple-Axis Spectrometer at the NCNR.
    Lynn JW; Chen Y; Chang S; Zhao Y; Chi S; Ratcliff W; Ueland BG; Erwin RW
    J Res Natl Inst Stand Technol; 2012; 117():61-79. PubMed ID: 26900514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurements of the vertical coherence length in neutron interferometry.
    Pushin DA; Arif M; Huber MG; Cory DG
    Phys Rev Lett; 2008 Jun; 100(25):250404. PubMed ID: 18643642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Epithermal neutron beams for clinical studies of boron neutron capture therapy: a dosimetric comparison of seven beams.
    Binns PJ; Riley KJ; Harling OK
    Radiat Res; 2005 Aug; 164(2):212-20. PubMed ID: 16038592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neutron personnel dosimetry intercomparison studies at the Oak Ridge National Laboratory: a summary (1981-1986).
    Swaja RE; Sims CS
    Health Phys; 1988 Sep; 55(3):549-64. PubMed ID: 3170209
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intercalibration of physical neutron dosimetry for the RA-3 and MURR thermal neutron sources for BNCT small-animal research.
    Pozzi EC; Thorp S; Brockman J; Miller M; Nigg DW; Hawthorne MF
    Appl Radiat Isot; 2011 Dec; 69(12):1921-3. PubMed ID: 21330143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Review of clinical results of fast neutron therapy in the USA.
    Peters LJ; Maor MH; Laramore GE; Griffin TW; Hendrickson FR
    Strahlentherapie; 1985 Dec; 161(12):731-8. PubMed ID: 4082208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.