These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27308216)

  • 1. Electronic Property Modulation of One-Dimensional Extended Graphdiyne Nanowires from a First-Principle Crystal Orbital View.
    Zhu Y; Bai H; Huang Y
    ChemistryOpen; 2016 Feb; 5(1):78-87. PubMed ID: 27308216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Properties of 2D Carbon-Graphdiyne.
    Jia Z; Li Y; Zuo Z; Liu H; Huang C; Li Y
    Acc Chem Res; 2017 Oct; 50(10):2470-2478. PubMed ID: 28915007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalized Graphdiyne Nanowires: On-Surface Synthesis and Assessment of Band Structure, Flexibility, and Information Storage Potential.
    Klappenberger F; Hellwig R; Du P; Paintner T; Uphoff M; Zhang L; Lin T; Moghanaki BA; Paszkiewicz M; Vobornik I; Fujii J; Fuhr O; Zhang YQ; Allegretti F; Ruben M; Barth JV
    Small; 2018 Apr; 14(14):e1704321. PubMed ID: 29405570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions.
    Long M; Tang L; Wang D; Li Y; Shuai Z
    ACS Nano; 2011 Apr; 5(4):2593-600. PubMed ID: 21443198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widely tunable band gaps of graphdiyne: an ab initio study.
    Koo J; Park M; Hwang S; Huang B; Jang B; Kwon Y; Lee H
    Phys Chem Chem Phys; 2014 May; 16(19):8935-9. PubMed ID: 24691588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal orbital studies on the 1D silic-diyne nanoribbons and nanotubes.
    Zhu Y; Bai H; Huang Y
    J Phys Condens Matter; 2016 Feb; 28(4):045303. PubMed ID: 26744378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and electronic properties of bilayer and trilayer graphdiyne.
    Zheng Q; Luo G; Liu Q; Quhe R; Zheng J; Tang K; Gao Z; Nagase S; Lu J
    Nanoscale; 2012 Jul; 4(13):3990-6. PubMed ID: 22677896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pervasive Ohmic contacts of monolayer 4-hT
    Dong MM; Zhang GP; Wang ZQ; Li ZL; Wang ML; Wang CK; Fu XX
    Nanotechnology; 2020 May; 31(22):225705. PubMed ID: 31995789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Ultrathin Graphdiyne Film Using a Surface Template.
    Zhou J; Xie Z; Liu R; Gao X; Li J; Xiong Y; Tong L; Zhang J; Liu Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2632-2637. PubMed ID: 29620348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and electronic properties of Mo
    Chung YK; Lee WG; Chae S; Choi JY; Huh J
    Sci Rep; 2019 Feb; 9(1):1222. PubMed ID: 30718721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification.
    Bu H; Zhao M; Zhang H; Wang X; Xi Y; Wang Z
    J Phys Chem A; 2012 Apr; 116(15):3934-9. PubMed ID: 22435915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab Initio Study of Octane Moiety Adsorption on H- and Cl-Functionalized Silicon Nanowires.
    Ferrucci B; Buonocore F; Giusepponi S; Shalabny A; Bashouti MY; Celino M
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-free interfacial growth of graphdiyne hollow microspheres and the mechanistic origin of their SERS activity.
    Zhang L; Yi W; Li J; Wei G; Xi G; Mao L
    Nat Commun; 2023 Oct; 14(1):6318. PubMed ID: 37813839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneously Splitting Copper Nanowires into Quantum Dots on Graphdiyne for Suppressing Lithium Dendrites.
    Zuo Z; He F; Wang F; Li L; Li Y
    Adv Mater; 2020 Dec; 32(49):e2004379. PubMed ID: 33150673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology.
    Peng Q; Dearden AK; Crean J; Han L; Liu S; Wen X; De S
    Nanotechnol Sci Appl; 2014; 7():1-29. PubMed ID: 24808721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Li Adsorption on Graphdiyne Using Hybrid DFT Calculations.
    Kim J; Kang S; Lim J; Kim WY
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2677-2683. PubMed ID: 29745641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-Plane Dielectric Screening of Few-Layer Graphdiyne and Its Family.
    Koo J; Yang L; Lee H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2571-2578. PubMed ID: 29484878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review.
    Tian W; Cheng C; Wang C; Li W
    Recent Pat Nanotechnol; 2020; 14(4):294-306. PubMed ID: 32525786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection.
    Xie J; Wang N; Dong X; Wang C; Du Z; Mei L; Yong Y; Huang C; Li Y; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2579-2590. PubMed ID: 29509394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and electronic properties of ZnO/GaN heterostructured nanowires from first-principles study.
    Zhang Y; Fang DQ; Zhang SL; Huang R; Wen YH
    Phys Chem Chem Phys; 2016 Jan; 18(4):3097-102. PubMed ID: 26741266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.