BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 27308585)

  • 1. PINK1 deficiency enhances autophagy and mitophagy induction.
    Gómez-Sánchez R; Yakhine-Diop SM; Bravo-San Pedro JM; Pizarro-Estrella E; Rodríguez-Arribas M; Climent V; Martin-Cano FE; González-Soltero ME; Tandon A; Fuentes JM; González-Polo RA
    Mol Cell Oncol; 2016 Mar; 3(2):e1046579. PubMed ID: 27308585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitochondrial kinase PINK1: functions beyond mitophagy.
    Voigt A; Berlemann LA; Winklhofer KF
    J Neurochem; 2016 Oct; 139 Suppl 1():232-239. PubMed ID: 27251035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1).
    Kim J; Fiesel FC; Belmonte KC; Hudec R; Wang WX; Kim C; Nelson PT; Springer W; Kim J
    Mol Neurodegener; 2016 Jul; 11(1):55. PubMed ID: 27456084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal autophagy and mitophagy in Parkinson's disease.
    Lizama BN; Chu CT
    Mol Aspects Med; 2021 Dec; 82():100972. PubMed ID: 34130867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells.
    Cui T; Fan C; Gu L; Gao H; Liu Q; Zhang T; Qi Z; Zhao C; Zhao H; Cai Q; Yang H
    Brain Res; 2011 Jun; 1394():1-13. PubMed ID: 21262209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitophagy: the latest problem for Parkinson's disease.
    Vives-Bauza C; Przedborski S
    Trends Mol Med; 2011 Mar; 17(3):158-65. PubMed ID: 21146459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy.
    Wang L; Cho YL; Tang Y; Wang J; Park JE; Wu Y; Wang C; Tong Y; Chawla R; Zhang J; Shi Y; Deng S; Lu G; Wu Y; Tan HW; Pawijit P; Lim GG; Chan HY; Zhang J; Fang L; Yu H; Liou YC; Karthik M; Bay BH; Lim KL; Sze SK; Yap CT; Shen HM
    Cell Res; 2018 Aug; 28(8):787-802. PubMed ID: 29934616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual Antagonism of PINK1/Parkin and PGC-1α Contributes to Maintenance of Mitochondrial Homeostasis in Rotenone-Induced Neurotoxicity.
    Peng K; Xiao J; Yang L; Ye F; Cao J; Sai Y
    Neurotox Res; 2019 Feb; 35(2):331-343. PubMed ID: 30242625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy.
    Nguyen TN; Padman BS; Lazarou M
    Trends Cell Biol; 2016 Oct; 26(10):733-744. PubMed ID: 27291334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PINK1: A Bridge between Mitochondria and Parkinson's Disease.
    Gonçalves FB; Morais VA
    Life (Basel); 2021 Apr; 11(5):. PubMed ID: 33919398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple pathways for mitophagy: A neurodegenerative conundrum for Parkinson's disease.
    Chu CT
    Neurosci Lett; 2019 Apr; 697():66-71. PubMed ID: 29626647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations.
    Geisler S; Holmström KM; Treis A; Skujat D; Weber SS; Fiesel FC; Kahle PJ; Springer W
    Autophagy; 2010 Oct; 6(7):871-8. PubMed ID: 20798600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial dynamics, cell death and the pathogenesis of Parkinson's disease.
    Büeler H
    Apoptosis; 2010 Nov; 15(11):1336-53. PubMed ID: 20131004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunocytochemical Monitoring of PINK1/Parkin-Mediated Mitophagy in Cultured Cells.
    Fujimaki M; Saiki S; Sasazawa Y; Ishikawa KI; Imamichi Y; Sumiyoshi K; Hattori N
    Methods Mol Biol; 2018; 1759():19-27. PubMed ID: 28361483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Optineurin in the Mitochondrial Dysfunction: Potential Implications in Neurodegenerative Diseases and Cancer.
    Weil R; Laplantine E; Curic S; Génin P
    Front Immunol; 2018; 9():1243. PubMed ID: 29971063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal Mitophagy: Lessons from a Pathway Linked to Parkinson's Disease.
    Corti O
    Neurotox Res; 2019 Aug; 36(2):292-305. PubMed ID: 31102068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in
    Cornelissen T; Vilain S; Vints K; Gounko N; Verstreken P; Vandenberghe W
    Elife; 2018 May; 7():. PubMed ID: 29809156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial dysfunction in Parkinson's disease.
    Hu Q; Wang G
    Transl Neurodegener; 2016; 5():14. PubMed ID: 27453777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.