These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27309010)

  • 1. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs.
    Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B
    Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Structure-Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles.
    Huang Y; Li X; Xu S; Zheng H; Zhang L; Chen J; Hong H; Kusko R; Li R
    Environ Health Perspect; 2020 Jun; 128(6):67010. PubMed ID: 32692251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.
    Basant N; Gupta S
    Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies.
    Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J
    Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells: Machine learning boosts nano-safety assessment.
    Huang Y; Li X; Cao J; Wei X; Li Y; Wang Z; Cai X; Li R; Chen J
    Environ Int; 2022 Jun; 164():107258. PubMed ID: 35483183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.
    Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J
    Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR.
    Kar S; Gajewicz A; Roy K; Leszczynski J; Puzyn T
    Ecotoxicol Environ Saf; 2016 Apr; 126():238-244. PubMed ID: 26773833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles.
    Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM
    J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
    Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.
    Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J
    Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method.
    Fjodorova N; Novic M; Gajewicz A; Rasulev B
    Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review.
    Li J; Wang C; Yue L; Chen F; Cao X; Wang Z
    Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles.
    Hu X; Cook S; Wang P; Hwang HM
    Sci Total Environ; 2009 Apr; 407(8):3070-2. PubMed ID: 19215968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-SAR Modeling for Predicting the Cytotoxicity of Metal Oxide Nanoparticles to PaCa2.
    Shi H; Pan Y; Yang F; Cao J; Tan X; Yuan B; Jiang J
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model.
    Shin HK; Kim KY; Park JW; No KT
    SAR QSAR Environ Res; 2017 Nov; 28(11):875-888. PubMed ID: 29189078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to
    Roy J; Roy K
    Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across.
    Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T
    Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the toxicities of metal oxide nanoparticles based on support vector regression with a residual bootstrapping method.
    Zhai X; Chen M; Lu W
    Toxicol Mech Methods; 2018 Jul; 28(6):440-449. PubMed ID: 29644916
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Kar S; Pathakoti K; Leszczynska D; Tchounwou PB; Leszczynski J
    Nanotoxicology; 2022 Jun; 16(5):566-579. PubMed ID: 36149909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles.
    Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG
    Environ Int; 2023 Jul; 177():108025. PubMed ID: 37329761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.