BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2730902)

  • 21. Changes in the membrane surface charge density and/or membrane potential of the porcine intestinal brush-border membrane vesicles induced by treatment with neuraminidase.
    Ohyashiki T; Taka M; Mohri T
    J Biochem; 1989 Oct; 106(4):584-8. PubMed ID: 2606911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature adaptation of biological membranes: differential homoeoviscous responses in brush-border and basolateral membranes of carp intestinal mucosa.
    Lee JA; Cossins AR
    Biochim Biophys Acta; 1990 Jul; 1026(2):195-203. PubMed ID: 2378886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increase in molecular rigidity of the protein conformation of brain Na+-K+-ATPase by modification with 4-hydroxy-2-nonenal.
    Miyake H; Kadoya A; Ohyashiki T
    Biol Pharm Bull; 2003 Dec; 26(12):1652-6. PubMed ID: 14646165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen radical-induced inhibition of alkaline phosphatase activity in reconstituted membranes.
    Ohyashiki T; Kumada Y; Hatanaka N; Matsui K
    Arch Biochem Biophys; 1994 Sep; 313(2):310-7. PubMed ID: 8080278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of ionic strength on the membrane fluidity of rabbit intestinal brush-border membranes. A fluorescence probe study.
    Ohyashiki T; Mohri T
    Biochim Biophys Acta; 1983 Jun; 731(2):312-7. PubMed ID: 6849926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of oxidant exposure on monkey intestinal brush-border membrane.
    Nalini S; Ibrahim SA; Balasubramanian KA
    Biochim Biophys Acta; 1993 Apr; 1147(2):169-76. PubMed ID: 8476910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid peroxidation of the brush-border membrane: membrane physical properties and glucose transport.
    Jourd'Heuil D; Vaananen P; Meddings JB
    Am J Physiol; 1993 Jun; 264(6 Pt 1):G1009-15. PubMed ID: 8333526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hormonal effects on the sulfhydryl groups associated with intestinal brush border membrane proteins.
    Tolosa de Talamoni N; Mykkanen H; Cai Q; Wasserman RH
    Biochim Biophys Acta; 1991 Sep; 1094(2):224-30. PubMed ID: 1654120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid peroxidation causes an increase of lipid order and a decrease of 5'-nucleotidase activity in the liver plasma membrane.
    Pieri C; Falasca M; Marcheselli F; Recchioni R; Moroni F
    Cell Mol Biol; 1992 Jul; 38(4):437-42. PubMed ID: 1499043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-lipid interactions in human small intestinal brush-border membranes.
    Dudeja PK; Harig JM; Ramaswamy K; Brasitus TA
    Am J Physiol; 1989 Nov; 257(5 Pt 1):G809-17. PubMed ID: 2596611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Premalignant alterations in the lipid composition and fluidity of colonic brush border membranes of rats administered 1,2 dimethylhydrazine.
    Brasitus TA; Dudeja PK; Dahiya R
    J Clin Invest; 1986 Mar; 77(3):831-40. PubMed ID: 3949981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional differences in the lipid composition and fluidity of rat colonic brush-border membranes.
    Brasitus TA; Dudeja PK
    Biochim Biophys Acta; 1985 Sep; 819(1):10-7. PubMed ID: 4041447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrene excimer fluorescence in rabbit skeletal alphaalphatropomyosin labeled with N-(1-pyrene)maleimide. A probe of sulfhydryl proximity and local chain separation.
    Betcher-Lange SL; Lehrer SS
    J Biol Chem; 1978 Jun; 253(11):3757-60. PubMed ID: 565773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of sulfhydryl group availability in the intestinal brush border membrane by deficiencies of dietary calcium and phosphorus in chicks.
    Tolosa de Talamoni N; Mykkanen H; Wasserman RH
    J Nutr; 1990 Oct; 120(10):1198-204. PubMed ID: 2213248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biophysical consequences of lipid peroxidation in membranes.
    Richter C
    Chem Phys Lipids; 1987; 44(2-4):175-89. PubMed ID: 3311416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton permeability and lipid dynamics of gastric and duodenal apical membrane vesicles.
    Wilkes JM; Ballard HJ; Dryden DT; Hirst BH
    Am J Physiol; 1989 Mar; 256(3 Pt 1):G553-62. PubMed ID: 2538075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of sulfhydryl groups in intestinal brush border membranes. Localization of side-chains essential for glucose transport and phlorizin binding.
    Klip A; Grinstein S; Semenza G
    Biochim Biophys Acta; 1979 Dec; 558(2):233-45. PubMed ID: 508745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recruitment of SH-containing peptides to lipid and biological membranes through the use of a palmitic acid functionalized with a maleimide group.
    Haralampiev I; Mertens M; Schwarzer R; Herrmann A; Volkmer R; Wessig P; Müller P
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):323-6. PubMed ID: 25417776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hormonal influence on lipid-protein interactions in biological membranes. Lactation effects on alkaline phosphatase activity and intestinal brush border membrane properties in rat.
    Molina AS; Paladini A; Giménez MS
    Horm Metab Res; 1997 Apr; 29(4):159-63. PubMed ID: 9178023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and Characterization of a New Bifunctionalized, Fluorescent, and Amphiphilic Molecule for Recruiting SH-Containing Molecules to Membranes.
    Mertens M; Hilsch M; Haralampiev I; Volkmer R; Wessig P; Müller P
    Chembiochem; 2018 Aug; 19(15):1643-1647. PubMed ID: 29785742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.