These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 27309490)

  • 1. Wearable inertial sensors for human movement analysis.
    Iosa M; Picerno P; Paolucci S; Morone G
    Expert Rev Med Devices; 2016 Jul; 13(7):641-59. PubMed ID: 27309490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel device for continuous monitoring of tremor and other motor symptoms.
    Battista L; Romaniello A
    Neurol Sci; 2018 Aug; 39(8):1333-1343. PubMed ID: 29736737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.
    Picerno P
    Gait Posture; 2017 Jan; 51():239-246. PubMed ID: 27833057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
    Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL
    Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable inertial sensors for human movement analysis: a five-year update.
    Picerno P; Iosa M; D'Souza C; Benedetti MG; Paolucci S; Morone G
    Expert Rev Med Devices; 2021 Dec; 18(sup1):79-94. PubMed ID: 34601995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review.
    Chen S; Lach J; Lo B; Yang GZ
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1521-1537. PubMed ID: 28113185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of tremor activity in the Parkinson's disease using a set of wearable sensors.
    Rigas G; Tzallas AT; Tsipouras MG; Bougia P; Tripoliti EE; Baga D; Fotiadis DI; Tsouli SG; Konitsiotis S
    IEEE Trans Inf Technol Biomed; 2012 May; 16(3):478-87. PubMed ID: 22231198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait analysis using wearable sensors.
    Tao W; Liu T; Zheng R; Feng H
    Sensors (Basel); 2012; 12(2):2255-83. PubMed ID: 22438763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models.
    Seiter J; Derungs A; Schuster-Amft C; Amft O; Tröster G
    Methods Inf Med; 2015; 54(3):248-55. PubMed ID: 25658903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit.
    Dai H; Zhang P; Lueth TC
    Sensors (Basel); 2015 Sep; 15(10):25055-71. PubMed ID: 26426020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational framework for the standardization of motion analysis exploiting wearable inertial sensors.
    Turcato A; Ramat S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4963-6. PubMed ID: 22255452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrumented shoes for activity classification in the elderly.
    Moufawad el Achkar C; Lenoble-Hoskovec C; Paraschiv-Ionescu A; Major K; Büla C; Aminian K
    Gait Posture; 2016 Feb; 44():12-7. PubMed ID: 27004626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A trial of making reference gait data for simple gait evaluation system with wireless inertial sensors.
    Karasawa Y; Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3427-30. PubMed ID: 24110465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of upper limb use in children with typical development and neurodevelopmental disorders by inertial sensors: a systematic review.
    Braito I; Maselli M; Sgandurra G; Inguaggiato E; Beani E; Cecchi F; Cioni G; Boyd R
    J Neuroeng Rehabil; 2018 Nov; 15(1):94. PubMed ID: 30400992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Use of Wearable Sensors in Human Movement Analysis in Non-Swimming Aquatic Activities: A Systematic Review.
    Marinho DA; Neiva HP; Morais JE
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31842306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative wearable sensors for objective assessment of Parkinson's disease.
    Maetzler W; Domingos J; Srulijes K; Ferreira JJ; Bloem BR
    Mov Disord; 2013 Oct; 28(12):1628-37. PubMed ID: 24030855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human body parts tracking and kinematic features assessment based on RSSI and inertial sensor measurements.
    Blumrosen G; Luttwak A
    Sensors (Basel); 2013 Aug; 13(9):11289-313. PubMed ID: 23979481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.