These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Wearable Sensors to Monitor, Enable Feedback, and Measure Outcomes of Activity and Practice. Dobkin BH; Martinez C Curr Neurol Neurosci Rep; 2018 Oct; 18(12):87. PubMed ID: 30293160 [TBL] [Abstract][Full Text] [Related]
24. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait. Das R; Paul S; Mourya GK; Kumar N; Hussain M Front Neurosci; 2022; 16():859298. PubMed ID: 35495059 [TBL] [Abstract][Full Text] [Related]
25. Use of multiple wearable inertial sensors in upper limb motion tracking. Zhou H; Stone T; Hu H; Harris N Med Eng Phys; 2008 Jan; 30(1):123-33. PubMed ID: 17251049 [TBL] [Abstract][Full Text] [Related]
29. Wearable technology for biomechanics: e-textile or micromechanical sensors? De Rossi D; Veltink P IEEE Eng Med Biol Mag; 2010; 29(3):37-43. PubMed ID: 20659856 [TBL] [Abstract][Full Text] [Related]
30. Automated detection of gait initiation and termination using wearable sensors. Novak D; Reberšek P; De Rossi SM; Donati M; Podobnik J; Beravs T; Lenzi T; Vitiello N; Carrozza MC; Munih M Med Eng Phys; 2013 Dec; 35(12):1713-20. PubMed ID: 23938085 [TBL] [Abstract][Full Text] [Related]
31. Objective measurement of upper limb activity and mobility during everyday behavior using ambulatory accelerometry: the upper limb activity monitor. Schasfoort FC; Bussmann JB; Martens WL; Stam HJ Behav Res Methods; 2006 Aug; 38(3):439-46. PubMed ID: 17186754 [TBL] [Abstract][Full Text] [Related]
32. Low-cost wearable data acquisition for stroke rehabilitation: a proof-of-concept study on accelerometry for functional task assessment. Salazar AJ; Silva AS; Silva C; Borges CM; Correia MV; Santos RS; Vilas-Boas JP Top Stroke Rehabil; 2014; 21(1):12-22. PubMed ID: 24521836 [TBL] [Abstract][Full Text] [Related]
33. Heel and toe clearance estimation for gait analysis using wireless inertial sensors. Mariani B; Rochat S; Büla CJ; Aminian K IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865 [TBL] [Abstract][Full Text] [Related]
34. An instance-based algorithm with auxiliary similarity information for the estimation of gait kinematics from wearable sensors. Goulermas JY; Findlow AH; Nester CJ; Liatsis P; Zeng XJ; Kenney LP; Tresadern P; Thies SB; Howard D IEEE Trans Neural Netw; 2008 Sep; 19(9):1574-82. PubMed ID: 18779089 [TBL] [Abstract][Full Text] [Related]
35. Inertial sensors versus standard systems in gait analysis: a systematic review and meta-analysis. Petraglia F; Scarcella L; Pedrazzi G; Brancato L; Puers R; Costantino C Eur J Phys Rehabil Med; 2019 Apr; 55(2):265-280. PubMed ID: 30311493 [TBL] [Abstract][Full Text] [Related]
36. Use of wearable technology for performance assessment: a validation study. Papi E; Osei-Kuffour D; Chen YM; McGregor AH Med Eng Phys; 2015 Jul; 37(7):698-704. PubMed ID: 25937613 [TBL] [Abstract][Full Text] [Related]
38. Advances in quantitative assessment of parkinsonian motor symptoms with wearable devices. Zhong X; Zheng J; Ye Q Sci China Life Sci; 2018 Dec; 61(12):1589-1592. PubMed ID: 30547347 [No Abstract] [Full Text] [Related]
39. Wearable systems with minimal set-up for monitoring and training of balance and mobility. Chiari L Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5828-32. PubMed ID: 22255665 [TBL] [Abstract][Full Text] [Related]
40. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors. Wang Z; Jiang M; Hu Y; Li H IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):691-9. PubMed ID: 22614724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]