These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2730995)

  • 1. Effects of high intensity canoeing training on fibre area and fibre type in the latissimus dorsi muscle.
    Baker SJ; Hardy L
    Br J Sports Med; 1989 Mar; 23(1):23-6. PubMed ID: 2730995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proprioceptive neuromuscular facilitation training induced alterations in muscle fibre type and cross sectional area.
    Kofotolis N; Vrabas IS; Vamvakoudis E; Papanikolaou A; Mandroukas K
    Br J Sports Med; 2005 Mar; 39(3):e11. PubMed ID: 15728679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review.
    Abernethy PJ; Thayer R; Taylor AW
    Sports Med; 1990 Dec; 10(6):365-89. PubMed ID: 2291032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining.
    Klausen K; Andersen LB; Pelle I
    Acta Physiol Scand; 1981 Sep; 113(1):9-16. PubMed ID: 7315443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sprint-training effects on some contractile properties of single skinned human muscle fibres.
    Lynch GS; McKenna MJ; Williams DA
    Acta Physiol Scand; 1994 Nov; 152(3):295-306. PubMed ID: 7872007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intensified endurance training on the concentration of Na,K-ATPase and Ca-ATPase in human skeletal muscle.
    Madsen K; Franch J; Clausen T
    Acta Physiol Scand; 1994 Mar; 150(3):251-8. PubMed ID: 8010132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of strength training and immobilization on human muscle fibres.
    MacDougall JD; Elder GC; Sale DG; Moroz JR; Sutton JR
    Eur J Appl Physiol Occup Physiol; 1980 Feb; 43(1):25-34. PubMed ID: 7371625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of an arm ergometer training programme on wheelchair subjects.
    Taylor AW; McDonell E; Brassard L
    Paraplegia; 1986 Apr; 24(2):105-14. PubMed ID: 3714290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in the proportion of fast-twitch muscle fibres by sprint training in males.
    Jansson E; Esbjörnsson M; Holm I; Jacobs I
    Acta Physiol Scand; 1990 Nov; 140(3):359-63. PubMed ID: 2150579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A decade of aerobic endurance training: histological evidence for fibre type transformation.
    Thayer R; Collins J; Noble EG; Taylor AW
    J Sports Med Phys Fitness; 2000 Dec; 40(4):284-9. PubMed ID: 11296997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of high intensity resistance and low intensity endurance training on myosin heavy chain isoform expression in highly trained rowers.
    Liu Y; Lormes W; Reissnecker S; Steinacker JM
    Int J Sports Med; 2003 May; 24(4):264-70. PubMed ID: 12784168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes.
    Laursen PB; Jenkins DG
    Sports Med; 2002; 32(1):53-73. PubMed ID: 11772161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans.
    Putman CT; Xu X; Gillies E; MacLean IM; Bell GJ
    Eur J Appl Physiol; 2004 Aug; 92(4-5):376-84. PubMed ID: 15241691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men.
    Larsen MS; Vissing K; Thams L; Sieljacks P; Dalgas U; Nellemann B; Christensen B
    Exp Physiol; 2014 Oct; 99(10):1409-20. PubMed ID: 25128327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dynamic ischaemic training on human skeletal muscle dimensions.
    Nygren AT; Sundberg CJ; Göransson H; Esbjörnsson-Liljedahl M; Jansson E; Kaijser L
    Eur J Appl Physiol; 2000 May; 82(1-2):137-41. PubMed ID: 10879455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular adaptations during concurrent strength and endurance training versus strength training.
    Häkkinen K; Alen M; Kraemer WJ; Gorostiaga E; Izquierdo M; Rusko H; Mikkola J; Häkkinen A; Valkeinen H; Kaarakainen E; Romu S; Erola V; Ahtiainen J; Paavolainen L
    Eur J Appl Physiol; 2003 Mar; 89(1):42-52. PubMed ID: 12627304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans.
    Schantz P; Randall-Fox E; Hutchison W; Tydén A; Astrand PO
    Acta Physiol Scand; 1983 Feb; 117(2):219-26. PubMed ID: 6223509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle fibre type characteristics in endurance trained and untrained individuals.
    Fridén J; Sjöström M; Ekblom B
    Eur J Appl Physiol Occup Physiol; 1984; 52(3):266-71. PubMed ID: 6539677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of endurance training on capillary supply of human skeletal muscle on two age groups (20 and 60 years).
    Denis C; Chatard JC; Dormois D; Linossier MT; Geyssant A; Lacour JR
    J Physiol (Paris); 1986; 81(5):379-83. PubMed ID: 3572830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle fibre size adaptation to an eight-week swimming programme.
    Lavoie JM; Taylor AW; Montpetit RR
    Eur J Appl Physiol Occup Physiol; 1980; 44(2):161-5. PubMed ID: 7190909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.