These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27310368)

  • 1. Effect of body mass distribution on the ontogeny of positional behaviors in non-human primates: Longitudinal follow-up of infant captive olive baboons (Papio anubis).
    Druelle F; Aerts P; Berillon G
    Am J Primatol; 2016 Nov; 78(11):1201-1221. PubMed ID: 27310368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood.
    Druelle F; Aerts P; D'Août K; Moulin V; Berillon G
    J Anat; 2017 Jun; 230(6):805-819. PubMed ID: 28294323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of bipedality as the result of a developmental by-product: The case study of the olive baboon (Papio anubis).
    Druelle F; Aerts P; Berillon G
    J Hum Evol; 2017 Dec; 113():155-161. PubMed ID: 29054165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral implications of ontogenetic changes in intrinsic hand and foot proportions in olive baboons (Papio Anubis).
    Druelle F; Young J; Berillon G
    Am J Phys Anthropol; 2018 Jan; 165(1):65-76. PubMed ID: 29076148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipedality from locomotor autonomy to adulthood in captive olive baboon (Papio anubis): Cross-sectional follow-up and first insight into the impact of body mass distribution.
    Druelle F; Aerts P; Berillon G
    Am J Phys Anthropol; 2016 Jan; 159(1):73-84. PubMed ID: 26293421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased performance in juvenile baboons is consistent with ontogenetic changes in morphology.
    Boulinguez-Ambroise G; Herrel A; Berillon G; Young JW; Cornette R; Meguerditchian A; Cazeau C; Bellaiche L; Pouydebat E
    Am J Phys Anthropol; 2021 Jul; 175(3):546-558. PubMed ID: 33483958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of bipedal walking in olive baboons, Papio anubis: A kinematic analysis.
    Druelle F; Özçelebi J; Marchal F; Berillon G
    Am J Biol Anthropol; 2022 Apr; 177(4):719-734. PubMed ID: 36787778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bipedal behaviour in olive baboons: infants versus adults in a captive environment.
    Druelle F; Berillon G
    Folia Primatol (Basel); 2013; 84(6):347-61. PubMed ID: 23969888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of limb mass distribution in infant baboons (Papio cynocephalus).
    Raichlen DA
    J Hum Evol; 2005 Oct; 49(4):452-67. PubMed ID: 16011842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The quadrupedal walking gait of the olive baboon, Papio anubis: an exploratory study integrating kinematics and EMG.
    Druelle F; Supiot A; Meulemans S; Schouteden N; Molina-Vila P; Rimbaud B; Aerts P; Berillon G
    J Exp Biol; 2021 Jul; 224(14):. PubMed ID: 34292320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of limb mass distribution on the ontogeny of quadrupedalism in infant baboons (Papio cynocephalus) and implications for the evolution of primate quadrupedalism.
    Raichlen DA
    J Hum Evol; 2005 Oct; 49(4):415-31. PubMed ID: 15998533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence of forelimb and hindlimb Natural Pendular Period in baboons (Papio cynocephalus) and its implication for the evolution of primate quadrupedalism.
    Raichlen DA
    J Hum Evol; 2004 Jun; 46(6):719-38. PubMed ID: 15183672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of alpha male removal on the social behavior of a group of olive baboons (
    Orient E; Guillén-Salazar F
    J Appl Anim Welf Sci; 2021; 24(4):424-433. PubMed ID: 34435517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematics and spatiotemporal parameters of infant-carrying in olive baboons.
    Anvari Z; Berillon G; Asgari Khaneghah A; Grimaud-Herve D; Moulin V; Nicolas G
    Am J Phys Anthropol; 2014 Nov; 155(3):392-404. PubMed ID: 25059514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotion, postures, substrate use, and foot grasping in the marsupial feathertail glider Acrobates pygmaeus (Diprotodontia: Acrobatidae): Insights into early euprimate evolution.
    Youlatos D; Moussa D; Karantanis NE; Rychlik L
    J Hum Evol; 2018 Oct; 123():148-159. PubMed ID: 30097183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The body center of mass in primates: Is it more caudal than in other quadrupedal mammals?
    Druelle F; Berthet M; Quintard B
    Am J Phys Anthropol; 2019 May; 169(1):170-178. PubMed ID: 30839107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age- and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (Rhinopithecus roxellana).
    Zhu WW; Garber PA; Bezanson M; Qi XG; Li BG
    Am J Primatol; 2015 Jan; 77(1):98-108. PubMed ID: 25219793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body size and the small branch niche: using marsupial ontogeny to model primate locomotor evolution.
    Shapiro LJ; Young JW; VandeBerg JL
    J Hum Evol; 2014 Mar; 68():14-31. PubMed ID: 24508352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic pressure patterns in the hands of olive baboons (Papio anubis) during terrestrial locomotion: implications for cercopithecoid primate hand morphology.
    Patel BA; Wunderlich RE
    Anat Rec (Hoboken); 2010 Apr; 293(4):710-8. PubMed ID: 20235326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor and postural development of wild chimpanzees.
    Sarringhaus LA; MacLatchy LM; Mitani JC
    J Hum Evol; 2014 Jan; 66():29-38. PubMed ID: 24238359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.