These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 27310398)
21. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Cai ZQ; Schnitzer SA; Bongers F Oecologia; 2009 Aug; 161(1):25-33. PubMed ID: 19418072 [TBL] [Abstract][Full Text] [Related]
22. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Slot M; Rey-Sánchez C; Gerber S; Lichstein JW; Winter K; Kitajima K Glob Chang Biol; 2014 Sep; 20(9):2915-26. PubMed ID: 24604769 [TBL] [Abstract][Full Text] [Related]
23. Foliar respiration and its temperature sensitivity in trees and lianas: in situ measurements in the upper canopy of a tropical forest. Slot M; Wright SJ; Kitajima K Tree Physiol; 2013 May; 33(5):505-15. PubMed ID: 23592296 [TBL] [Abstract][Full Text] [Related]
24. Photosynthetic nutrient-use efficiency in three fast-growing tropical trees with differing leaf longevities. Hiremath AJ Tree Physiol; 2000 Aug; 20(14):937-44. PubMed ID: 11303568 [TBL] [Abstract][Full Text] [Related]
25. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees. Asao S; Ryan MG Tree Physiol; 2015 Jun; 35(6):608-20. PubMed ID: 25870320 [TBL] [Abstract][Full Text] [Related]
26. Higher water and nutrient use efficiencies in savanna than in rainforest lianas result in no difference in photosynthesis. Zhang YB; Yang D; Zhang KY; Bai XL; Wang YS; Wu HD; Ding LZ; Zhang YJ; Zhang JL Tree Physiol; 2022 Jan; 42(1):145-159. PubMed ID: 34312678 [TBL] [Abstract][Full Text] [Related]
27. Influences of heterotrophic and autotrophic resource use on carbon and hydrogen isotopic compositions of tropical tree leaves. Terwilliger VJ; Kitajima K; Le Roux-Swarthout DJ; Mulkey S; Wright SJ Isotopes Environ Health Stud; 2001; 37(2):133-60. PubMed ID: 11761402 [TBL] [Abstract][Full Text] [Related]
28. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis). Kanpanon N; Kasemsap P; Thaler P; Kositsup B; Gay F; Lacote R; Epron D Tree Physiol; 2015 Nov; 35(11):1166-75. PubMed ID: 26358051 [TBL] [Abstract][Full Text] [Related]
29. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Coble AP; VanderWall B; Mau A; Cavaleri MA Tree Physiol; 2016 Sep; 36(9):1077-91. PubMed ID: 27246164 [TBL] [Abstract][Full Text] [Related]
30. Carbon uptake, growth and resource-use efficiency in one invasive and six native Hawaiian dry forest tree species. Stratton LC; Goldstein G Tree Physiol; 2001 Dec; 21(18):1327-34. PubMed ID: 11731343 [TBL] [Abstract][Full Text] [Related]
31. Diverse patterns of stored water use among saplings in seasonally dry tropical forests. Wolfe BT; Kursar TA Oecologia; 2015 Dec; 179(4):925-36. PubMed ID: 26025573 [TBL] [Abstract][Full Text] [Related]
32. Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India. Singh KP; Kushwaha CP Ann Bot; 2006 Feb; 97(2):265-76. PubMed ID: 16357055 [TBL] [Abstract][Full Text] [Related]
33. Spatial and temporal variations in leaf area index, specific leaf area and leaf nitrogen of two co-occurring savanna tree species. Simioni G; Gignoux J; Le Roux X; Appé R; Benest D Tree Physiol; 2004 Feb; 24(2):205-16. PubMed ID: 14676036 [TBL] [Abstract][Full Text] [Related]
34. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. Cernusak LA; Winter K; Turner BL New Phytol; 2010 Feb; 185(3):770-9. PubMed ID: 19968799 [TBL] [Abstract][Full Text] [Related]
35. Expanding leaves of mature deciduous forest trees rapidly become autotrophic. Keel SG; Schädel C Tree Physiol; 2010 Oct; 30(10):1253-9. PubMed ID: 20688879 [TBL] [Abstract][Full Text] [Related]
36. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Eller CB; Burgess SS; Oliveira RS Tree Physiol; 2015 Apr; 35(4):387-99. PubMed ID: 25716877 [TBL] [Abstract][Full Text] [Related]
37. Variation in woody plant delta(13)C along a topoedaphic gradient in a subtropical savanna parkland. Bai E; Boutton TW; Liu F; Wu XB; Archer SR Oecologia; 2008 Jun; 156(3):479-89. PubMed ID: 18327619 [TBL] [Abstract][Full Text] [Related]
38. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes. Panchen ZA; Primack RB; Gallinat AS; Nordt B; Stevens AD; Du Y; Fahey R Ann Bot; 2015 Nov; 116(6):865-73. PubMed ID: 25808654 [TBL] [Abstract][Full Text] [Related]
39. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework. Weng E; Farrior CE; Dybzinski R; Pacala SW Glob Chang Biol; 2017 Jun; 23(6):2482-2498. PubMed ID: 27782353 [TBL] [Abstract][Full Text] [Related]
40. Physiological performance of beech (Fagus sylvatica L.) at its southeastern distribution limit in Europe: seasonal changes in nitrogen, carbon and water balance. Nahm M; Radoglou K; Halyvopoulos G; Gessler A; Rennenberg H; Fotelli MN Plant Biol (Stuttg); 2006 Jan; 8(1):52-63. PubMed ID: 16435269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]