These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 27310533)
41. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas. Musgrove M; Opsahl SP; Mahler BJ; Herrington C; Sample TL; Banta JR Sci Total Environ; 2016 Oct; 568():457-469. PubMed ID: 27314899 [TBL] [Abstract][Full Text] [Related]
42. Influence of recharge rates on steady-state plume lengths. Birla S; Yadav PK; Mahalawat P; Händel F; Chahar BR; Liedl R J Contam Hydrol; 2020 Nov; 235():103709. PubMed ID: 32916587 [TBL] [Abstract][Full Text] [Related]
43. Sensitivity of mGROWA-simulated groundwater recharge to changes in soil and land use parameters in a Mediterranean environment and conclusions in view of ensemble-based climate impact simulations. Ehlers L; Herrmann F; Blaschek M; Duttmann R; Wendland F Sci Total Environ; 2016 Feb; 543(Pt B):937-51. PubMed ID: 25980930 [TBL] [Abstract][Full Text] [Related]
44. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water: A case study in north China. Li C; Li B; Bi E Sci Total Environ; 2019 Jun; 668():1030-1037. PubMed ID: 31018445 [TBL] [Abstract][Full Text] [Related]
45. Hydrological components of groundwater recharge in leaky aquifers adjacent to semipervious streambank: analytical study. Mahdavi A Environ Sci Pollut Res Int; 2022 Apr; 29(17):24833-24848. PubMed ID: 34826081 [TBL] [Abstract][Full Text] [Related]
46. ENVIRONMENTAL AUDITING: An Aquifer Vulnerability Assessment of the Paluxy Aquifer, Central Texas, USA, Using GIS and a Modified DRASTIC Approach. Fritch TG; McKnight CL; Yelderman JC; Arnold JG Environ Manage; 2000 Mar; 25(3):337-345. PubMed ID: 10629314 [TBL] [Abstract][Full Text] [Related]
47. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer. Baram S; Kurtzman D; Ronen Z; Peeters A; Dahan O J Environ Manage; 2014 Jan; 132():135-44. PubMed ID: 24295724 [TBL] [Abstract][Full Text] [Related]
48. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Babiker IS; Mohamed MA; Hiyama T; Kato K Sci Total Environ; 2005 Jun; 345(1-3):127-40. PubMed ID: 15919534 [TBL] [Abstract][Full Text] [Related]
49. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Li Z; Chen X; Liu W; Si B Sci Total Environ; 2017 May; 586():827-835. PubMed ID: 28196754 [TBL] [Abstract][Full Text] [Related]
50. [Characteristics and Indicative Significance of Groundwater Stable Isotopes in the Loess Plateau at the Regional Scale]. Xiang W; Liu X; Si BC Huan Jing Ke Xue; 2024 Sep; 45(9):5290-5297. PubMed ID: 39323147 [TBL] [Abstract][Full Text] [Related]
51. Coupling distributed stormwater collection and managed aquifer recharge: Field application and implications. Beganskas S; Fisher AT J Environ Manage; 2017 Sep; 200():366-379. PubMed ID: 28599220 [TBL] [Abstract][Full Text] [Related]
52. Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy). Lorenzi V; Banzato F; Barberio MD; Goeppert N; Goldscheider N; Gori F; Lacchini A; Manetta M; Medici G; Rusi S; Petitta M Heliyon; 2024 Jan; 10(2):e24663. PubMed ID: 38298644 [TBL] [Abstract][Full Text] [Related]
54. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain. Herrera C; Custodio E Sci Total Environ; 2014 Oct; 496():531-550. PubMed ID: 25108255 [TBL] [Abstract][Full Text] [Related]
55. Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling. Russo TA; Fisher AT; Lockwood BS Ground Water; 2015; 53(3):389-400. PubMed ID: 24916466 [TBL] [Abstract][Full Text] [Related]
56. Integrated application of a Bayesian mixing model, numerical model, and environmental tracers to characterize groundwater recharge sources in a mountainous area. Koh EH; Lee E; Lee KK; Moon DC Sci Total Environ; 2022 Dec; 853():158619. PubMed ID: 36084785 [TBL] [Abstract][Full Text] [Related]
57. Artificial recharge by means of careo channels versus natural aquifer recharge in a semi-arid, high-mountain watershed (Sierra Nevada, Spain). Jódar J; Zakaluk T; González-Ramón A; Ruiz-Constán A; Lechado CM; Martín-Civantos JM; Custodio E; Urrutia J; Herrera C; Lambán LJ; Durán JJ; Martos-Rosillo S Sci Total Environ; 2022 Jun; 825():153937. PubMed ID: 35189216 [TBL] [Abstract][Full Text] [Related]
58. Field variation of groundwater recharge and its uncertainty via multiple tracers' method in deep loess vadose zone. Li H; Li M; Miao C; Si B; Lu Y Sci Total Environ; 2023 Jun; 876():162752. PubMed ID: 36906021 [TBL] [Abstract][Full Text] [Related]
59. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). Mayaud C; Wagner T; Benischke R; Birk S J Hydrol (Amst); 2014 Apr; 511(100):628-639. PubMed ID: 24748687 [TBL] [Abstract][Full Text] [Related]
60. Innovative environmental tracer techniques for evaluating sources of spring discharge from a carbonate aquifer bisected by a river. Heilweil VM; Sweetkind DS; Gerner SJ Ground Water; 2014; 52(1):71-83. PubMed ID: 23425448 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]