These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 27310533)
61. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain. Cruz-Fuentes T; Cabrera Mdel C; Heredia J; Custodio E Sci Total Environ; 2014 Jun; 484():154-66. PubMed ID: 24698802 [TBL] [Abstract][Full Text] [Related]
62. Transient Recharge Estimability Through Field-Scale Groundwater Model Calibration. Knowling MJ; Werner AD Ground Water; 2017 Nov; 55(6):827-840. PubMed ID: 28498485 [TBL] [Abstract][Full Text] [Related]
63. Spring response to precipitation events using δ(18)O and δ(2)H in the Tanour catchment, NW Jordan. Hamdan I; Wiegand B; Toll M; Sauter M Isotopes Environ Health Stud; 2016 Dec; 52(6):682-93. PubMed ID: 27237686 [TBL] [Abstract][Full Text] [Related]
64. Potential groundwater recharge from deep drainage of irrigation water. Altafi Dadgar M; Nakhaei M; Porhemmat J; Eliasi B; Biswas A Sci Total Environ; 2020 May; 716():137105. PubMed ID: 32044499 [TBL] [Abstract][Full Text] [Related]
65. Calculating man-made depletion of a stressed multiple aquifer resource on a national scale. Rödiger T; Magri F; Geyer S; Mallast U; Odeh T; Siebert C Sci Total Environ; 2020 Jul; 725():138478. PubMed ID: 32304968 [TBL] [Abstract][Full Text] [Related]
66. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge. Zlotnik VA; Kacimov A; Al-Maktoumi A Ground Water; 2017 Nov; 55(6):797-810. PubMed ID: 28464226 [TBL] [Abstract][Full Text] [Related]
67. Overexploitation assessment in an urban karst aquifer: The case of Sete Lagoas (MG), Brazil. Schuch CS; Galvão P; de Melo MC; Pereira S Environ Res; 2023 Nov; 236(Pt 2):116820. PubMed ID: 37541417 [TBL] [Abstract][Full Text] [Related]
68. Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile. Herrera C; Gamboa C; Custodio E; Jordan T; Godfrey L; Jódar J; Luque JA; Vargas J; Sáez A Sci Total Environ; 2018 May; 624():114-132. PubMed ID: 29248702 [TBL] [Abstract][Full Text] [Related]
69. Regional estimation of base recharge to ground water using water balance and a base-flow index. Szilagyi J; Harvey FE; Ayers JF Ground Water; 2003; 41(4):504-13. PubMed ID: 12873013 [TBL] [Abstract][Full Text] [Related]
70. Soil Conservation Service-Curve Number method-based historical analysis of long-term (1936-2016) temporal evolution of city-scale potential natural groundwater recharge from precipitation: case study Algiers (Algeria). Boukhemacha MA Environ Monit Assess; 2023 Sep; 195(10):1168. PubMed ID: 37682383 [TBL] [Abstract][Full Text] [Related]
71. Highly parameterized inversion of groundwater reactive transport for a complex field site. Carniato L; Schoups G; van de Giesen N; Seuntjens P; Bastiaens L; Sapion H J Contam Hydrol; 2015 Feb; 173():38-58. PubMed ID: 25528244 [TBL] [Abstract][Full Text] [Related]
72. Identifying and quantifying geochemical and mixing processes in the Matanza-Riachuelo Aquifer System, Argentina. Armengol S; Manzano M; Bea SA; Martínez S Sci Total Environ; 2017 Dec; 599-600():1417-1432. PubMed ID: 28531951 [TBL] [Abstract][Full Text] [Related]
73. Improved Recharge Estimation from Portable, Low-Cost Weather Stations. Holländer HM; Wang Z; Assefa KA; Woodbury AD Ground Water; 2016 Mar; 54(2):243-54. PubMed ID: 26011672 [TBL] [Abstract][Full Text] [Related]
74. Estimation of groundwater recharge variability using a GIS-based distributed water balance model in Makutupora basin, Tanzania. Kisiki CP; Ayenew T; Mjemah IC Heliyon; 2023 Apr; 9(4):e15117. PubMed ID: 37151620 [TBL] [Abstract][Full Text] [Related]
75. A new method for estimating recharge to unconfined aquifers using differential river gauging. McCallum AM; Andersen MS; Acworth RI Ground Water; 2014; 52(2):291-7. PubMed ID: 23550897 [TBL] [Abstract][Full Text] [Related]
76. Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters. Aquilina L; Vergnaud-Ayraud V; Labasque T; Bour O; Molénat J; Ruiz L; de Montety V; De Ridder J; Roques C; Longuevergne L Sci Total Environ; 2012 Oct; 435-436():167-78. PubMed ID: 22854088 [TBL] [Abstract][Full Text] [Related]
77. Assessment of the impact of rainfall uncertainties on the groundwater recharge estimations of the Tikur-Wuha watershed, rift valley lakes basin, Ethiopia. Beyene TD; Zimale FA; Gebrekristos ST; Nedaw D Heliyon; 2024 Jan; 10(2):e24311. PubMed ID: 38293503 [TBL] [Abstract][Full Text] [Related]
78. Computation of groundwater resources and recharge in Chithar River Basin, South India. Subramani T; Babu S; Elango L Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326 [TBL] [Abstract][Full Text] [Related]
79. Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system. Qian H; Chen J; Howard KWF Environ Pollut; 2020 Aug; 263(Pt A):114669. PubMed ID: 33618462 [TBL] [Abstract][Full Text] [Related]
80. Predicting aquifer response time for application in catchment modeling. Walker GR; Gilfedder M; Dawes WR; Rassam DW Ground Water; 2015; 53(3):475-84. PubMed ID: 24842053 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]