These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 27310533)
81. Shallow aquifer response to climate change scenarios in a small catchment in the Guarani Aquifer outcrop zone. Melo DCD; Wendland E An Acad Bras Cienc; 2017 May; 89(1 Suppl 0):391-406. PubMed ID: 28562825 [TBL] [Abstract][Full Text] [Related]
82. Quantification of groundwater recharge in urban environments. Tubau I; Vázquez-Suñé E; Carrera J; Valhondo C; Criollo R Sci Total Environ; 2017 Aug; 592():391-402. PubMed ID: 28324856 [TBL] [Abstract][Full Text] [Related]
83. Evaluating potential groundwater recharge in the unsteady state for deep-rooted afforestation in deep loess deposits. Chen G; Meng T; Wu W; Si B; Li M; Liu B; Wu S; Feng H; Siddique KHM Sci Total Environ; 2023 Feb; 858(Pt 2):159837. PubMed ID: 36411672 [TBL] [Abstract][Full Text] [Related]
84. Developing a pan-European high-resolution groundwater recharge map - Combining satellite data and national survey data using machine learning. Martinsen G; Bessiere H; Caballero Y; Koch J; Collados-Lara AJ; Mansour M; Sallasmaa O; Pulido-Velazquez D; Williams NH; Zaadnoordijk WJ; Stisen S Sci Total Environ; 2022 May; 822():153464. PubMed ID: 35093341 [TBL] [Abstract][Full Text] [Related]
85. Noble gas excess air applied to distinguish groundwater recharge conditions. Ingram RG; Hiscock KM; Dennis PF Environ Sci Technol; 2007 Mar; 41(6):1949-55. PubMed ID: 17410789 [TBL] [Abstract][Full Text] [Related]
86. Estimating the spatial distribution of artificial groundwater recharge using multiple tracers. Moeck C; Radny D; Auckenthaler A; Berg M; Hollender J; Schirmer M Isotopes Environ Health Stud; 2017 Oct; 53(5):484-499. PubMed ID: 28589773 [TBL] [Abstract][Full Text] [Related]
87. Episodic and Continuous Recharge Estimation from High-Resolution Well Records. Eaton TT Ground Water; 2020 Jul; 58(4):511-523. PubMed ID: 31599963 [TBL] [Abstract][Full Text] [Related]
88. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China. Huang Y; Chang Q; Li Z Sci Total Environ; 2018 Jul; 628-629():443-452. PubMed ID: 29453173 [TBL] [Abstract][Full Text] [Related]
89. Geostatistical analysis of tritium, groundwater age and other noble gas derived parameters in California. Visser A; Moran JE; Hillegonds D; Singleton MJ; Kulongoski JT; Belitz K; Esser BK Water Res; 2016 Mar; 91():314-30. PubMed ID: 26803267 [TBL] [Abstract][Full Text] [Related]
90. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Cuthbert MO; Taylor RG; Favreau G; Todd MC; Shamsudduha M; Villholth KG; MacDonald AM; Scanlon BR; Kotchoni DOV; Vouillamoz JM; Lawson FMA; Adjomayi PA; Kashaigili J; Seddon D; Sorensen JPR; Ebrahim GY; Owor M; Nyenje PM; Nazoumou Y; Goni I; Ousmane BI; Sibanda T; Ascott MJ; Macdonald DMJ; Agyekum W; Koussoubé Y; Wanke H; Kim H; Wada Y; Lo MH; Oki T; Kukuric N Nature; 2019 Aug; 572(7768):230-234. PubMed ID: 31391559 [TBL] [Abstract][Full Text] [Related]
91. Characterization of flow dynamics and vulnerability in a coastal aquifer system. Murgulet D; Tick GR Ground Water; 2013; 51(6):893-903. PubMed ID: 23373963 [TBL] [Abstract][Full Text] [Related]
92. Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency. Mermillod-Blondin F; Simon L; Maazouzi C; Foulquier A; Delolme C; Marmonier P Water Res; 2015 Sep; 81():27-37. PubMed ID: 26024961 [TBL] [Abstract][Full Text] [Related]
93. A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer. Anders R; Mendez GO; Futa K; Danskin WR Ground Water; 2014; 52(5):756-68. PubMed ID: 24032352 [TBL] [Abstract][Full Text] [Related]
94. A 35 ka record of groundwater recharge in south-west Australia using stable water isotopes. Priestley SC; Meredith KT; Treble PC; Cendón DI; Griffiths AD; Hollins SE; Baker A; Pigois JP Sci Total Environ; 2020 May; 717():135105. PubMed ID: 31839292 [TBL] [Abstract][Full Text] [Related]
95. CMBEAR: Python-Based Recharge Estimator Using the Chloride Mass Balance Method in Australia. Irvine DJ; Cartwright I Ground Water; 2022 May; 60(3):418-425. PubMed ID: 34919277 [TBL] [Abstract][Full Text] [Related]
96. Temporal analysis of spring water data to assess nitrate inputs to groundwater in an agricultural area (Osona, NE Spain). Boy-Roura M; Menció A; Mas-Pla J Sci Total Environ; 2013 May; 452-453():433-45. PubMed ID: 23567097 [TBL] [Abstract][Full Text] [Related]
97. The respective roles of modern and paleo recharge to alluvium aquifers in continental rift basins: A case study from El Qaa plain, Sinai, Egypt. Yousif M; Hussien HM; Abotalib AZ Sci Total Environ; 2020 Oct; 739():139927. PubMed ID: 32544685 [TBL] [Abstract][Full Text] [Related]
98. Influence of inter-aquifer leakage on well-injection capacity: Theory and aquifer-scale mapping for artificial recharge. Shandilya RN; Bresciani E; Runkel AC; Higgins R; Lee S; Kang PK J Environ Manage; 2022 Nov; 322():116035. PubMed ID: 36057179 [TBL] [Abstract][Full Text] [Related]
100. An Aquifer Storage and Recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas. Sheng Z J Environ Manage; 2005 Jun; 75(4):367-77. PubMed ID: 15854729 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]