These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 27310667)
21. Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2007 Jan; 111(2):408-22. PubMed ID: 17214493 [TBL] [Abstract][Full Text] [Related]
22. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent. Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG J Chem Theory Comput; 2009 Sep; 5(9):2284-300. PubMed ID: 26616615 [TBL] [Abstract][Full Text] [Related]
23. A simple method for estimating the absolute solvation free energy of monovalent ions in different solvents. Farrokhpour H; Manassir M J Phys Chem A; 2015 Jan; 119(1):160-71. PubMed ID: 25402631 [TBL] [Abstract][Full Text] [Related]
24. Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models. Simonson T; Carlsson J; Case DA J Am Chem Soc; 2004 Apr; 126(13):4167-80. PubMed ID: 15053606 [TBL] [Abstract][Full Text] [Related]
25. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. Shivakumar D; Deng Y; Roux B J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601 [TBL] [Abstract][Full Text] [Related]
26. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. Riccardi D; Schaefer P; Cui Q J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267 [TBL] [Abstract][Full Text] [Related]
27. Accurate aqueous proton dissociation constants calculations for selected angiotensin-converting enzyme inhibitors. Sramko M; Smiesko M; Remko M J Biomol Struct Dyn; 2008 Jun; 25(6):599-608. PubMed ID: 18399693 [TBL] [Abstract][Full Text] [Related]
28. Methods To Improve the Calculations of Solvation Model Density Solvation Free Energies and Associated Aqueous p Xu L; Coote ML J Phys Chem A; 2019 Aug; 123(34):7430-7438. PubMed ID: 31382743 [TBL] [Abstract][Full Text] [Related]
29. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model. Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052 [TBL] [Abstract][Full Text] [Related]
30. Generalizing Continuum Solvation in Crystal to Nonaqueous Solvents: Implementation, Parametrization, and Application to Molecules and Surfaces. Vassetti D; Oǧuz IC; Labat F J Chem Theory Comput; 2021 Oct; 17(10):6432-6448. PubMed ID: 34488338 [TBL] [Abstract][Full Text] [Related]
31. Solvation Energies of the Proton in Methanol. Fifen JJ; Nsangou M; Dhaouadi Z; Motapon O; Jaidane NE J Chem Theory Comput; 2013 Feb; 9(2):1173-81. PubMed ID: 26588760 [TBL] [Abstract][Full Text] [Related]
32. An improved fragment-based quantum mechanical method for calculation of electrostatic solvation energy of proteins. Jia X; Wang X; Liu J; Zhang JZ; Mei Y; He X J Chem Phys; 2013 Dec; 139(21):214104. PubMed ID: 24320361 [TBL] [Abstract][Full Text] [Related]
33. Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution. Cheatham TE; Srinivasan J; Case DA; Kollman PA J Biomol Struct Dyn; 1998 Oct; 16(2):265-80. PubMed ID: 9833666 [TBL] [Abstract][Full Text] [Related]
34. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337 [TBL] [Abstract][Full Text] [Related]
35. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Gilson MK; Honig B Proteins; 1988; 4(1):7-18. PubMed ID: 3186692 [TBL] [Abstract][Full Text] [Related]
36. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL; Dumont E; Chodera JD; Dill KA J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029 [TBL] [Abstract][Full Text] [Related]
37. Cluster expansion of the solvation free energy difference: Systematic improvements in the solvation of single ions. Pliego JR J Chem Phys; 2017 Jul; 147(3):034104. PubMed ID: 28734282 [TBL] [Abstract][Full Text] [Related]
38. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation. Goncalves PF; Stassen H J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041 [TBL] [Abstract][Full Text] [Related]
39. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764 [TBL] [Abstract][Full Text] [Related]
40. Improving the Accuracy of PCM-UAHF and PCM-UAKS Calculations Using Optimized Electrostatic Scaling Factors. Xu L; Coote ML J Chem Theory Comput; 2019 Dec; 15(12):6958-6967. PubMed ID: 31657916 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]