BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27311423)

  • 1. Enhanced in vivo visualization of the microcirculation by topical application of fructose solution confirmed with correlation mapping optical coherence tomography.
    Enfield J; McGrath J; Daly SM; Leahy M
    J Biomed Opt; 2016 Aug; 21(8):081212. PubMed ID: 27311423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of cmOCT and continuous wavelet transform analysis to the assessment of skin microcirculation dynamics.
    Smirni S; MacDonald MP; Robertson CP; McNamara PM; O'Gorman S; Leahy MJ; Khan F
    J Biomed Opt; 2018 Jul; 23(7):1-13. PubMed ID: 29992798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo correlation mapping microscopy.
    McGrath J; Alexandrov S; Owens P; Subhash H; Leahy M
    J Biomed Opt; 2016 Apr; 21(4):46004. PubMed ID: 27071415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask.
    Choi WJ; Reif R; Yousefi S; Wang RK
    J Biomed Opt; 2014 Mar; 19(3):36010. PubMed ID: 24623159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography.
    Zafar H; Enfield J; O'Connell ML; Ramsay B; Lynch M; Leahy MJ
    Skin Res Technol; 2014 May; 20(2):141-6. PubMed ID: 23869903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.
    Zugaj D; Chenet A; Petit L; Vaglio J; Pascual T; Piketty C; Bourdes V
    Skin Res Technol; 2018 Aug; 24(3):396-406. PubMed ID: 29399881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT).
    Enfield J; Jonathan E; Leahy M
    Biomed Opt Express; 2011 Apr; 2(5):1184-93. PubMed ID: 21559130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography.
    Subhash HM; Leahy MJ
    J Biomed Opt; 2014 Feb; 19(2):21103. PubMed ID: 23807553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removing noises caused by motion artefacts in microcirculation maps of human skin in vivo.
    Chen C; Shi W; Gao W
    J Microsc; 2015 Dec; 260(3):389-99. PubMed ID: 26356237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography.
    Yu H; Lee P; Jo Y; Lee K; Tuchin VV; Jeong Y; Park Y
    J Biomed Opt; 2016 Dec; 21(12):121510. PubMed ID: 27792807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously.
    Guo L; Shi R; Zhang C; Zhu D; Ding Z; Li P
    J Biomed Opt; 2016 Aug; 21(8):081202. PubMed ID: 26950927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking.
    Zhang Q; Huang Y; Zhang T; Kubach S; An L; Laron M; Sharma U; Wang RK
    J Biomed Opt; 2015 Jun; 20(6):066008. PubMed ID: 26102573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images.
    Jonathan E; Enfield J; Leahy MJ
    J Biophotonics; 2011 Sep; 4(9):583-7. PubMed ID: 21887769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of correlation mapping optical coherence tomography angiographic technique using a 200  kHz vertical-cavity surface-emitting laser source for in vivo microcirculation imaging applications.
    Lal C; Subhash HM; Alexandrov S; Leahy MJ
    Appl Opt; 2018 Aug; 57(22):E224-E231. PubMed ID: 30117906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging.
    Wen X; Jacques SL; Tuchin VV; Zhu D
    J Biomed Opt; 2012 Jun; 17(6):066022. PubMed ID: 22734778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin optical clearing potential of disaccharides.
    Feng W; Shi R; Ma N; Tuchina DK; Tuchin VV; Zhu D
    J Biomed Opt; 2016 Aug; 21(8):081207. PubMed ID: 27108771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage.
    Bykov A; Hautala T; Kinnunen M; Popov A; Karhula S; Saarakkala S; Nieminen MT; Tuchin V; Meglinski I
    J Biophotonics; 2016 Mar; 9(3):270-5. PubMed ID: 26097171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topical Application of Glycerol Increases Penetration Depth of Optical Coherence Tomography in Diagnosis of Basal Cell Carcinoma.
    Adan F; Oyen EMM; Holtackers RJ; van Loo E; Dermont GJ; Kelleners-Smeets NWJ; Nelemans PJ; Mosterd K
    Acta Derm Venereol; 2021 Jun; 101(6):adv00474. PubMed ID: 33903919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refractive index correction in optical coherence tomography images of multilayer tissues.
    Turani Z; Fatemizadeh E; Xu Q; Daveluy S; Mehregan D; Nasiri Avanaki MR
    J Biomed Opt; 2018 Jul; 23(7):1-4. PubMed ID: 29992800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.