These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27311460)

  • 1. In Silico 3D Modeling of Binding Activities.
    Moro S; Sturlese M; Ciancetta A; Floris M
    Methods Mol Biol; 2016; 1425():23-35. PubMed ID: 27311460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2015 Jun; 29(6):485-509. PubMed ID: 25940276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Jan; 33(1):47-59. PubMed ID: 30084081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of protein-ligand docking with simulated chemical shift perturbations.
    Ten Brink T; Aguirre C; Exner TE; Krimm I
    J Chem Inf Model; 2015 Feb; 55(2):275-83. PubMed ID: 25357133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015.
    Slynko I; Da Silva F; Bret G; Rognan D
    J Comput Aided Mol Des; 2016 Sep; 30(9):669-683. PubMed ID: 27480696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Monte Carlo-based receptor ensemble docking to virtual screening for GPCR ligands.
    Vilar S; Costanzi S
    Methods Enzymol; 2013; 522():263-78. PubMed ID: 23374190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling complexes of modeled proteins.
    Anishchenko I; Kundrotas PJ; Vakser IA
    Proteins; 2017 Mar; 85(3):470-478. PubMed ID: 27701777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise.
    Politi R; Convertino M; Popov K; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2016 Jun; 56(6):1032-41. PubMed ID: 27050767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current updates on computer aided protein modeling and designing.
    Khan FI; Wei DQ; Gu KR; Hassan MI; Tabrez S
    Int J Biol Macromol; 2016 Apr; 85():48-62. PubMed ID: 26730484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.
    Gadhe CG; Balupuri A; Cho SJ
    J Biomol Struct Dyn; 2015; 33(11):2491-510. PubMed ID: 25617117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is It Reliable to Use Common Molecular Docking Methods for Comparing the Binding Affinities of Enantiomer Pairs for Their Protein Target?
    Ramírez D; Caballero J
    Int J Mol Sci; 2016 Apr; 17(4):. PubMed ID: 27104528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions.
    Deng Z; Chuaqui C; Singh J
    J Med Chem; 2004 Jan; 47(2):337-44. PubMed ID: 14711306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Essential considerations for using protein-ligand structures in drug discovery.
    Warren GL; Do TD; Kelley BP; Nicholls A; Warren SD
    Drug Discov Today; 2012 Dec; 17(23-24):1270-81. PubMed ID: 22728777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction.
    Fan C; Wong PP; Zhao H
    J Chem Inf Model; 2020 Jan; 60(1):400-409. PubMed ID: 31833767
    [No Abstract]   [Full Text] [Related]  

  • 19. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biased Docking for Protein-Ligand Pose Prediction.
    Arcon JP; Turjanski AG; Martí MA; Forli S
    Methods Mol Biol; 2021; 2266():39-72. PubMed ID: 33759120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.