BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27311467)

  • 1. In Silico Models for Repeated-Dose Toxicity (RDT): Prediction of the No Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse Effect Level (LOAEL) for Drugs.
    Pizzo F; Benfenati E
    Methods Mol Biol; 2016; 1425():163-76. PubMed ID: 27311467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Models for Repeated-Dose Toxicity (RDT): Prediction of the No Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse Effect Level (LOAEL) for Drugs.
    Pizzo F; Gadaleta D; Benfenati E
    Methods Mol Biol; 2022; 2425():241-258. PubMed ID: 35188636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo Models for Sub-Chronic Repeated-Dose Toxicity: Systemic and Organ-Specific Toxicity.
    Selvestrel G; Lavado GJ; Toropova AP; Toropov AA; Gadaleta D; Marzo M; Baderna D; Benfenati E
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study parameters influencing NOAEL and LOAEL in toxicity feeding studies for pesticides: exposure duration versus dose decrement, dose spacing, group size and chemical class.
    Zarn JA; Engeli BE; Schlatter JR
    Regul Toxicol Pharmacol; 2011 Nov; 61(2):243-50. PubMed ID: 21875639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical warfare agents: estimating oral reference doses.
    Opresko DM; Young RA; Faust RA; Talmage SS; Watson AP; Ross RH; Davidson KA; King J
    Rev Environ Contam Toxicol; 1998; 156():1-183. PubMed ID: 9597943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing probabilistic and descriptive analyses of time-dose-toxicity relationship for determining no-observed-adverse-effect level in drug development.
    Glatard A; Berges A; Sahota T; Ambery C; Osborne J; Smith R; Hénin E; Chen C
    Toxicol Appl Pharmacol; 2015 Oct; 288(2):240-8. PubMed ID: 26232187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the LOAEL-to-NOAEL uncertainty factor for mild adverse effects from acute inhalation exposures.
    Alexeeff GV; Broadwin R; Liaw J; Dawson SV
    Regul Toxicol Pharmacol; 2002 Aug; 36(1):96-105. PubMed ID: 12383722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose.
    Contrera JF; Matthews EJ; Kruhlak NL; Benz RD
    Regul Toxicol Pharmacol; 2004 Dec; 40(3):185-206. PubMed ID: 15546675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of subchronic toxicity data using the benchmark dose approach.
    Gephart LA; Salminen WF; Nicolich MJ; Pelekis M
    Regul Toxicol Pharmacol; 2001 Feb; 33(1):37-59. PubMed ID: 11259178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic delivered dose of isotretinoin (13-cis-retinoic acid) and its metabolites in hamsters.
    Eckhoff C; Willhite CC
    Toxicol Appl Pharmacol; 1997 Sep; 146(1):79-87. PubMed ID: 9299599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental toxicity evaluation of emodin in rats and mice.
    Jahnke GD; Price CJ; Marr MC; Myers CB; George JD
    Birth Defects Res B Dev Reprod Toxicol; 2004 Apr; 71(2):89-101. PubMed ID: 15098202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the uncertainty factor for subchronic-to-chronic extrapolation: statistical analysis of toxicity data.
    Pieters MN; Kramer HJ; Slob W
    Regul Toxicol Pharmacol; 1998 Apr; 27(2):108-11. PubMed ID: 9671565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proposal for calculating the no-observed-adverse-effect level (NOAEL) for organic compounds responsible for liver toxicity based on their physicochemical properties.
    Jakubowski M; Czerczak S
    Int J Occup Med Environ Health; 2014 Aug; 27(4):627-40. PubMed ID: 25055806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic oral LOAEL prediction by using a commercially available computational QSAR tool.
    Rupp B; Appel KE; Gundert-Remy U
    Arch Toxicol; 2010 Sep; 84(9):681-8. PubMed ID: 20224925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point of departure (PoD) selection for the derivation of acceptable daily exposures (ADEs) for active pharmaceutical ingredients (APIs).
    Bercu JP; Morinello EJ; Sehner C; Shipp BK; Weideman PA
    Regul Toxicol Pharmacol; 2016 Aug; 79 Suppl 1():S48-56. PubMed ID: 27233925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of risk assessment for determining the safety of chemicals: recent assessment of residual solvents in drugs and di(2-ethylhexyl) phthalate.
    Hasegawa R; Koizumi M; Hirose A
    Congenit Anom (Kyoto); 2004 Jun; 44(2):51-9. PubMed ID: 15198717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the oral rat chronic lowest observed adverse effect level model in TOPKAT, a QSAR software package for toxicity prediction.
    Venkatapathy R; Moudgal CJ; Bruce RM
    J Chem Inf Comput Sci; 2004; 44(5):1623-9. PubMed ID: 15446819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of read-across and artificial neural network-based QSAR models for predicting systemic toxicity: A case study for valproic acid.
    Hisaki T; Kaneko MAN; Hirota M; Matsuoka M; Kouzuki H
    J Toxicol Sci; 2020; 45(2):95-108. PubMed ID: 32062621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the dose decrement in regulatory rat pesticide toxicity feeding studies.
    Zarn JA; Engeli BE; Schlatter JR
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):215-20. PubMed ID: 23911766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A study of the relationships between exposure periods and no-effect doses in repeated dose toxicity tests].
    Aida Y; Kamata E; Nakadate M
    Eisei Shikenjo Hokoku; 1992; (110):48-53. PubMed ID: 1364436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.