These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1063 related articles for article (PubMed ID: 27311474)
1. In Silico Study of In Vitro GPCR Assays by QSAR Modeling. Mansouri K; Judson RS Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474 [TBL] [Abstract][Full Text] [Related]
2. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. Zang Q; Rotroff DM; Judson RS J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462 [TBL] [Abstract][Full Text] [Related]
3. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Liu J; Mansouri K; Judson RS; Martin MT; Hong H; Chen M; Xu X; Thomas RS; Shah I Chem Res Toxicol; 2015 Apr; 28(4):738-51. PubMed ID: 25697799 [TBL] [Abstract][Full Text] [Related]
4. QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis. Gadaleta D; Manganelli S; Roncaglioni A; Toma C; Benfenati E; Mombelli E J Chem Inf Model; 2018 Aug; 58(8):1501-1517. PubMed ID: 29949360 [TBL] [Abstract][Full Text] [Related]
5. Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space. Shah F; Greene N Chem Res Toxicol; 2014 Jan; 27(1):86-98. PubMed ID: 24328225 [TBL] [Abstract][Full Text] [Related]
6. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096 [TBL] [Abstract][Full Text] [Related]
7. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability. Ingle BL; Veber BC; Nichols JW; Tornero-Velez R J Chem Inf Model; 2016 Nov; 56(11):2243-2252. PubMed ID: 27684444 [TBL] [Abstract][Full Text] [Related]
8. Exploring the QSAR's predictive truthfulness of the novel N-tuple discrete derivative indices on benchmark datasets. Martínez-Santiago O; Marrero-Ponce Y; Vivas-Reyes R; Rivera-Borroto OM; Hurtado E; Treto-Suarez MA; Ramos Y; Vergara-Murillo F; Orozco-Ugarriza ME; Martínez-López Y SAR QSAR Environ Res; 2017 May; 28(5):367-389. PubMed ID: 28590848 [TBL] [Abstract][Full Text] [Related]
9. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis. Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417 [TBL] [Abstract][Full Text] [Related]
10. ARKA: a framework of dimensionality reduction for machine-learning classification modeling, risk assessment, and data gap-filling of sparse environmental toxicity data. Banerjee A; Roy K Environ Sci Process Impacts; 2024 Jun; 26(6):991-1007. PubMed ID: 38743054 [TBL] [Abstract][Full Text] [Related]
11. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity. Luo M; Wang XS; Tropsha A Mol Inform; 2016 Jan; 35(1):36-41. PubMed ID: 27491652 [TBL] [Abstract][Full Text] [Related]
13. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity. Martin E; Mukherjee P; Sullivan D; Jansen J J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971 [TBL] [Abstract][Full Text] [Related]
14. Conformal Prediction Classification of a Large Data Set of Environmental Chemicals from ToxCast and Tox21 Estrogen Receptor Assays. Norinder U; Boyer S Chem Res Toxicol; 2016 Jun; 29(6):1003-10. PubMed ID: 27152554 [TBL] [Abstract][Full Text] [Related]
15. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
16. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes. Basant N; Gupta S; Singh KP Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829 [TBL] [Abstract][Full Text] [Related]
18. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Zhu H; Ye L; Richard A; Golbraikh A; Wright FA; Rusyn I; Tropsha A Environ Health Perspect; 2009 Aug; 117(8):1257-64. PubMed ID: 19672406 [TBL] [Abstract][Full Text] [Related]
19. Zebrafish AC Lavado GJ; Gadaleta D; Toma C; Golbamaki A; Toropov AA; Toropova AP; Marzo M; Baderna D; Arning J; Benfenati E Ecotoxicol Environ Saf; 2020 Oct; 202():110936. PubMed ID: 32800219 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships. Liu Z; Kelly R; Fang H; Ding D; Tong W Chem Res Toxicol; 2011 Jul; 24(7):1062-70. PubMed ID: 21627106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]