These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 27311564)
1. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant. Kamisaka Y; Kimura K; Uemura H; Ledesma-Amaro R Appl Microbiol Biotechnol; 2016 Sep; 100(18):8147-57. PubMed ID: 27311564 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Kamisaka Y; Kimura K; Uemura H; Yamaoka M Appl Microbiol Biotechnol; 2013 Aug; 97(16):7345-55. PubMed ID: 23613035 [TBL] [Abstract][Full Text] [Related]
3. Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae. Kamisaka Y; Kimura K; Uemura H; Yamaoka M Appl Microbiol Biotechnol; 2015 Jan; 99(1):201-10. PubMed ID: 25267159 [TBL] [Abstract][Full Text] [Related]
4. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Deltasnf2 disruptant of Saccharomyces cerevisiae. Kamisaka Y; Tomita N; Kimura K; Kainou K; Uemura H Biochem J; 2007 Nov; 408(1):61-8. PubMed ID: 17688423 [TBL] [Abstract][Full Text] [Related]
5. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412 [TBL] [Abstract][Full Text] [Related]
6. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Lin YY; Lu JY; Zhang J; Walter W; Dang W; Wan J; Tao SC; Qian J; Zhao Y; Boeke JD; Berger SL; Zhu H Cell; 2009 Mar; 136(6):1073-84. PubMed ID: 19303850 [TBL] [Abstract][Full Text] [Related]
7. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103 [TBL] [Abstract][Full Text] [Related]
8. Engineering of Saccharomyces cerevisiae for the accumulation of high amounts of triacylglycerol. Arhar S; Gogg-Fassolter G; Ogrizović M; Pačnik K; Schwaiger K; Žganjar M; Petrovič U; Natter K Microb Cell Fact; 2021 Jul; 20(1):147. PubMed ID: 34315498 [TBL] [Abstract][Full Text] [Related]
9. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. Tsai YY; Ohashi T; Wu CC; Bataa D; Misaki R; Limtong S; Fujiyama K J Biosci Bioeng; 2019 Apr; 127(4):430-440. PubMed ID: 30316698 [TBL] [Abstract][Full Text] [Related]
10. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360 [TBL] [Abstract][Full Text] [Related]
12. Increase in stearidonic acid by increasing the supply of histidine to oleaginous Saccharomyces cerevisiae. Kimura K; Kamisaka Y; Uemura H; Yamaoka M J Biosci Bioeng; 2014 Jan; 117(1):53-6. PubMed ID: 23932357 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and overexpression of DGA1, an acyl-CoA-dependent diacylglycerol acyltransferase, in the oleaginous yeast Rhodosporidiobolus fluvialis DMKU-RK253. Polburee P; Ohashi T; Tsai YY; Sumyai T; Lertwattanasakul N; Limtong S; Fujiyama K Microbiology (Reading); 2018 Jan; 164(1):1-10. PubMed ID: 29182511 [TBL] [Abstract][Full Text] [Related]
14. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes. Hsieh WC; Sutter BM; Ruess H; Barnes SD; Malladi VS; Tu BP Mol Cell; 2022 Jan; 82(1):60-74.e5. PubMed ID: 34995509 [TBL] [Abstract][Full Text] [Related]
15. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Zhao Y; Zhang Y; Nielsen J; Liu Z Biotechnol Bioeng; 2021 May; 118(5):2043-2052. PubMed ID: 33605428 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates. Wang J; Xu R; Wang R; Haque ME; Liu A Biosci Biotechnol Biochem; 2016 Jun; 80(6):1214-22. PubMed ID: 26865376 [TBL] [Abstract][Full Text] [Related]
17. Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the Deltasnf2 disruptant produces a significant increase in its enzyme activity. Kamisaka Y; Kimura K; Uemura H; Shibakami M Appl Microbiol Biotechnol; 2010 Sep; 88(1):105-15. PubMed ID: 20567816 [TBL] [Abstract][Full Text] [Related]
18. Saccharomyces cerevisiae Δ9-desaturase Ole1 forms a supercomplex with Slc1 and Dga1. Greenwood BL; Luo Z; Ahmed T; Huang D; Stuart DT J Biol Chem; 2023 Jul; 299(7):104882. PubMed ID: 37269945 [TBL] [Abstract][Full Text] [Related]
19. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. d'Espaux L; Ghosh A; Runguphan W; Wehrs M; Xu F; Konzock O; Dev I; Nhan M; Gin J; Reider Apel A; Petzold CJ; Singh S; Simmons BA; Mukhopadhyay A; García Martín H; Keasling JD Metab Eng; 2017 Jul; 42():115-125. PubMed ID: 28606738 [TBL] [Abstract][Full Text] [Related]
20. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J; Da Silva NA Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]