BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1253 related articles for article (PubMed ID: 27311583)

  • 1. The role of the Mre11-Rad50-Nbs1 complex in double-strand break repair-facts and myths.
    Takeda S; Hoa NN; Sasanuma H
    J Radiat Res; 2016 Aug; 57 Suppl 1(Suppl 1):i25-i32. PubMed ID: 27311583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double-strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines.
    Hoa NN; Akagawa R; Yamasaki T; Hirota K; Sasa K; Natsume T; Kobayashi J; Sakuma T; Yamamoto T; Komatsu K; Kanemaki MT; Pommier Y; Takeda S; Sasanuma H
    Genes Cells; 2015 Dec; 20(12):1059-76. PubMed ID: 26525166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks.
    Langerak P; Mejia-Ramirez E; Limbo O; Russell P
    PLoS Genet; 2011 Sep; 7(9):e1002271. PubMed ID: 21931565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRCA1 and CtIP Are Both Required to Recruit Dna2 at Double-Strand Breaks in Homologous Recombination.
    Hoa NN; Kobayashi J; Omura M; Hirakawa M; Yang SH; Komatsu K; Paull TT; Takeda S; Sasanuma H
    PLoS One; 2015; 10(4):e0124495. PubMed ID: 25909997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAD50 is required for efficient initiation of resection and recombinational repair at random, gamma-induced double-strand break ends.
    Westmoreland J; Ma W; Yan Y; Van Hulle K; Malkova A; Resnick MA
    PLoS Genet; 2009 Sep; 5(9):e1000656. PubMed ID: 19763170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection.
    Anand R; Ranjha L; Cannavo E; Cejka P
    Mol Cell; 2016 Dec; 64(5):940-950. PubMed ID: 27889449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA double-strand breaks.
    Yang YG; Saidi A; Frappart PO; Min W; Barrucand C; Dumon-Jones V; Michelon J; Herceg Z; Wang ZQ
    EMBO J; 2006 Nov; 25(23):5527-38. PubMed ID: 17082765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NBS1 promotes the endonuclease activity of the MRE11-RAD50 complex by sensing CtIP phosphorylation.
    Anand R; Jasrotia A; Bundschuh D; Howard SM; Ranjha L; Stucki M; Cejka P
    EMBO J; 2019 Apr; 38(7):. PubMed ID: 30787182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat-shock.
    Seno JD; Dynlacht JR
    J Cell Physiol; 2004 May; 199(2):157-70. PubMed ID: 15039997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair.
    Myler LR; Gallardo IF; Soniat MM; Deshpande RA; Gonzalez XB; Kim Y; Paull TT; Finkelstein IJ
    Mol Cell; 2017 Sep; 67(5):891-898.e4. PubMed ID: 28867292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes.
    Hoa NN; Shimizu T; Zhou ZW; Wang ZQ; Deshpande RA; Paull TT; Akter S; Tsuda M; Furuta R; Tsutsui K; Takeda S; Sasanuma H
    Mol Cell; 2016 Nov; 64(3):580-592. PubMed ID: 27814490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair.
    Chen L; Nievera CJ; Lee AY; Wu X
    J Biol Chem; 2008 Mar; 283(12):7713-20. PubMed ID: 18171670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex.
    Lee KY; Im JS; Shibata E; Park J; Handa N; Kowalczykowski SC; Dutta A
    Nat Commun; 2015 Jul; 6():7744. PubMed ID: 26215093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template.
    Williams RS; Williams JS; Tainer JA
    Biochem Cell Biol; 2007 Aug; 85(4):509-20. PubMed ID: 17713585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation.
    Xie M; Park D; You S; Li R; Owonikoko TK; Wang Y; Doetsch PW; Deng X
    Nucleic Acids Res; 2015 Jan; 43(2):960-72. PubMed ID: 25567982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins.
    Ghodke I; Muniyappa K
    J Biol Chem; 2013 Apr; 288(16):11273-86. PubMed ID: 23443654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA end resection is needed for the repair of complex lesions in G1-phase human cells.
    Averbeck NB; Ringel O; Herrlitz M; Jakob B; Durante M; Taucher-Scholz G
    Cell Cycle; 2014; 13(16):2509-16. PubMed ID: 25486192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deubiquitinase USP2 stabilizes the MRE11-RAD50-NBS1 complex at DNA double-strand break sites by counteracting the ubiquitination of NBS1.
    Kim H; Kim D; Choi H; Shin G; Lee JK
    J Biol Chem; 2023 Jan; 299(1):102752. PubMed ID: 36436562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable maintenance of the Mre11-Rad50-Nbs1 complex is sufficient to restore the DNA double-strand break response in cells lacking RecQL4 helicase activity.
    Kim H; Choi H; Im JS; Park SY; Shin G; Yoo JH; Kim G; Lee JK
    J Biol Chem; 2021 Oct; 297(4):101148. PubMed ID: 34473993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP puts the brake on DNA double-strand break repair: a new study shows that ATP switches the Mre11-Rad50-Nbs1 repair factor between signaling and processing of DNA ends.
    Hopfner KP
    Bioessays; 2014 Dec; 36(12):1170-8. PubMed ID: 25213441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 63.