BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27312066)

  • 1. Validation of tumor protein marker quantification by two independent automated immunofluorescence image analysis platforms.
    Peck AR; Girondo MA; Liu C; Kovatich AJ; Hooke JA; Shriver CD; Hu H; Mitchell EP; Freydin B; Hyslop T; Chervoneva I; Rui H
    Mod Pathol; 2016 Oct; 29(10):1143-54. PubMed ID: 27312066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of nuclear localized and tyrosine phosphorylated Stat5 in breast cancer predicts poor clinical outcome and increased risk of antiestrogen therapy failure.
    Peck AR; Witkiewicz AK; Liu C; Stringer GA; Klimowicz AC; Pequignot E; Freydin B; Tran TH; Yang N; Rosenberg AL; Hooke JA; Kovatich AJ; Nevalainen MT; Shriver CD; Hyslop T; Sauter G; Rimm DL; Magliocco AM; Rui H
    J Clin Oncol; 2011 Jun; 29(18):2448-58. PubMed ID: 21576635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring.
    Rizzardi AE; Johnson AT; Vogel RI; Pambuccian SE; Henriksen J; Skubitz AP; Metzger GJ; Schmechel SC
    Diagn Pathol; 2012 Jun; 7():42. PubMed ID: 22515559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms.
    Ahern TP; Beck AH; Rosner BA; Glass B; Frieling G; Collins LC; Tamimi RM
    J Clin Pathol; 2017 May; 70(5):428-434. PubMed ID: 27729430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated measurement of estrogen receptor in breast cancer: a comparison of fluorescent and chromogenic methods of measurement.
    Zarrella ER; Coulter M; Welsh AW; Carvajal DE; Schalper KA; Harigopal M; Rimm DL; Neumeister VM
    Lab Invest; 2016 Sep; 96(9):1016-25. PubMed ID: 27348626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double Immunohistochemistry and Digital Image Analysis.
    Moreno-Ruiz P; Wik Leiss L; Mezheyeuski A; Ehnman M
    Methods Mol Biol; 2019; 1913():3-11. PubMed ID: 30666595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining fluorescence-based image segmentation and automated microfluidics for ultrafast cell-by-cell assessment of biomarkers for HER2-type breast carcinoma.
    Migliozzi D; Nguyen HT; Gijs MAM
    J Biomed Opt; 2018 Nov; 24(2):1-8. PubMed ID: 30484294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital image analysis of Ki67 proliferation index in breast cancer using virtual dual staining on whole tissue sections: clinical validation and inter-platform agreement.
    Koopman T; Buikema HJ; Hollema H; de Bock GH; van der Vegt B
    Breast Cancer Res Treat; 2018 May; 169(1):33-42. PubMed ID: 29349710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical assessment of HER2 low breast cancer: interobserver reproducibility and correlation with digital image analysis.
    Sun H; Kang EY; Chen H; Sweeney KJ; Suchko M; Wu Y; Wen J; Krishnamurthy S; Albarracin CT; Ding QQ; Foo WC; Sahin AA
    Breast Cancer Res Treat; 2024 Jun; 205(2):403-411. PubMed ID: 38441847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane connectivity estimated by digital image analysis of HER2 immunohistochemistry is concordant with visual scoring and fluorescence in situ hybridization results: algorithm evaluation on breast cancer tissue microarrays.
    Laurinaviciene A; Dasevicius D; Ostapenko V; Jarmalaite S; Lazutka J; Laurinavicius A
    Diagn Pathol; 2011 Sep; 6():87. PubMed ID: 21943197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using immunofluorescent digital slide technology to quantify protein expression in archival paraffin-embedded tissue sections.
    Hashiguchi A; Hashimoto Y; Suzuki H; Sakamoto M
    Pathol Int; 2010 Nov; 60(11):720-5. PubMed ID: 20946521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative comparison and reproducibility of pathologist scoring and digital image analysis of estrogen receptor β2 immunohistochemistry in prostate cancer.
    Rizzardi AE; Zhang X; Vogel RI; Kolb S; Geybels MS; Leung YK; Henriksen JC; Ho SM; Kwak J; Stanford JL; Schmechel SC
    Diagn Pathol; 2016 Jul; 11(1):63. PubMed ID: 27401406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical note on the validation of a semi-automated image analysis software application for estrogen and progesterone receptor detection in breast cancer.
    Krecsák L; Micsik T; Kiszler G; Krenács T; Szabó D; Jónás V; Császár G; Czuni L; Gurzó P; Ficsor L; Molnár B
    Diagn Pathol; 2011 Jan; 6():6. PubMed ID: 21244664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispectral Fluorescence Imaging Allows for Distinctive Topographic Assessment and Subclassification of Tumor-Infiltrating and Surrounding Immune Cells.
    Wickenhauser C; Bethmann D; Feng Z; Jensen SM; Ballesteros-Merino C; Massa C; Steven A; Bauer M; Kaatzsch P; Pazaitis N; Toma G; Bifulco CB; Fox BA; Seliger B
    Methods Mol Biol; 2019; 1913():13-31. PubMed ID: 30666596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of multispectral imaging in automated quantitative scoring of immunohistochemistry.
    Fiore C; Bailey D; Conlon N; Wu X; Martin N; Fiorentino M; Finn S; Fall K; Andersson SO; Andren O; Loda M; Flavin R
    J Clin Pathol; 2012 Jun; 65(6):496-502. PubMed ID: 22447914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An international multicenter study to evaluate reproducibility of automated scoring for assessment of Ki67 in breast cancer.
    Rimm DL; Leung SCY; McShane LM; Bai Y; Bane AL; Bartlett JMS; Bayani J; Chang MC; Dean M; Denkert C; Enwere EK; Galderisi C; Gholap A; Hugh JC; Jadhav A; Kornaga EN; Laurinavicius A; Levenson R; Lima J; Miller K; Pantanowitz L; Piper T; Ruan J; Srinivasan M; Virk S; Wu Y; Yang H; Hayes DF; Nielsen TO; Dowsett M
    Mod Pathol; 2019 Jan; 32(1):59-69. PubMed ID: 30143750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High concordance of a closed-system, RT-qPCR breast cancer assay for HER2 mRNA, compared to clinically determined immunohistochemistry, fluorescence in situ hybridization, and quantitative immunofluorescence.
    Wasserman BE; Carvajal-Hausdorf DE; Ho K; Wong W; Wu N; Chu VC; Lai EW; Weidler JM; Bates M; Neumeister V; Rimm DL
    Lab Invest; 2017 Dec; 97(12):1521-1526. PubMed ID: 28892092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed ion beam imaging analysis for quantitation of protein expression in cancer tissue sections.
    Rost S; Giltnane J; Bordeaux JM; Hitzman C; Koeppen H; Liu SD
    Lab Invest; 2017 Aug; 97(8):992-1003. PubMed ID: 28553935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in quantitative immunohistochemistry and their contribution to breast cancer.
    Yaghoobi V; Martinez-Morilla S; Liu Y; Charette L; Rimm DL; Harigopal M
    Expert Rev Mol Diagn; 2020 May; 20(5):509-522. PubMed ID: 32178550
    [No Abstract]   [Full Text] [Related]  

  • 20. Optimisation of multiplex immunofluorescence for a non-spectral fluorescence scanning system.
    Anyaegbu CC; Lee-Pullen TF; Miller TJ; Abel TN; Platell CF; McCoy MJ
    J Immunol Methods; 2019 Sep; 472():25-34. PubMed ID: 31181211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.