These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27312070)

  • 61. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition.
    Knoll AH; Fairchild IJ; Swett K
    Palaios; 1993; 8():512-25. PubMed ID: 11539428
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Three-dimensional morphological and textural complexity of Archean putative microfossils from the Northeastern Pilbara Craton: indications of biogenicity of large (>15 microm) spheroidal and spindle-like structures.
    Sugitani K; Grey K; Nagaoka T; Mimura K
    Astrobiology; 2009 Sep; 9(7):603-15. PubMed ID: 19778272
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Carbonate organo-mineral micro- and ultrastructures in sub-fossil stromatolites: Marion lake, South Australia.
    Perri E; Tucker ME; Spadafora A
    Geobiology; 2012 Mar; 10(2):105-17. PubMed ID: 22039973
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae.
    Sforna MC; Loron CC; Demoulin CF; François C; Cornet Y; Lara YJ; Grolimund D; Ferreira Sanchez D; Medjoubi K; Somogyi A; Addad A; Fadel A; Compère P; Baudet D; Brocks JJ; Javaux EJ
    Nat Commun; 2022 Jan; 13(1):146. PubMed ID: 35013306
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley pool formation, in the Pilbara Craton, Western Australia.
    Sugitani K; Lepot K; Nagaoka T; Mimura K; Van Kranendonk M; Oehler DZ; Walter MR
    Astrobiology; 2010 Nov; 10(9):899-920. PubMed ID: 21118023
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits.
    Javaux EJ; Marshall CP; Bekker A
    Nature; 2010 Feb; 463(7283):934-8. PubMed ID: 20139963
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Speciation of Paleoarchean Life Demonstrated by Analysis of the Morphological Variation of Lenticular Microfossils from the Pilbara Craton, Australia.
    Sugitani K; Kohama T; Mimura K; Takeuchi M; Senda R; Morimoto H
    Astrobiology; 2018 Aug; 18(8):1057-1070. PubMed ID: 30070903
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Experimental maturation of Archaea encrusted by Fe-phosphates.
    Miot J; Bernard S; Bourreau M; Guyot F; Kish A
    Sci Rep; 2017 Dec; 7(1):16984. PubMed ID: 29208997
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.
    Walsh MM
    Astrobiology; 2004; 4(4):429-37. PubMed ID: 15684724
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Laser--Raman imagery of Earth's earliest fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Wdowiak TJ; Czaja AD
    Nature; 2002 Mar; 416(6876):73-6. PubMed ID: 11882894
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Archean microfossils: a reappraisal of early life on Earth.
    Altermann W; Kazmierczak J
    Res Microbiol; 2003 Nov; 154(9):611-7. PubMed ID: 14596897
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.
    Bower DM; Steele A; Fries MD; Kater L
    Astrobiology; 2013 Jan; 13(1):103-13. PubMed ID: 23268624
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In situ laser-Raman imagery of precambrian microscopic fossils.
    Kudryavtsev AB; Schopf JW; Agresti DG; Wdowiak TJ
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):823-6. PubMed ID: 11158554
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Taphonomy of Microbial Biosignatures in Spring Deposits: A Comparison of Modern, Quaternary, and Jurassic Examples.
    Potter-McIntyre SL; Williams J; Phillips-Lander C; O'Connell L
    Astrobiology; 2017 Mar; 17(3):216-230. PubMed ID: 28323483
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments.
    Ivarsson M; Lindblom S; Broman C; Holm NG
    Geobiology; 2008 Mar; 6(2):155-70. PubMed ID: 18380878
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Changes of aliphatic C-H bonds in cyanobacteria during experimental thermal maturation in the presence or absence of silica as evaluated by FTIR microspectroscopy.
    Igisu M; Yokoyama T; Ueno Y; Nakashima S; Shimojima M; Ohta H; Maruyama S
    Geobiology; 2018 Jul; 16(4):412-428. PubMed ID: 29869829
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Revisiting the sedimentary record of the rise of diatoms.
    Westacott S; Planavsky NJ; Zhao MY; Hull PM
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34183398
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An actualistic perspective into Archean worlds - (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa.
    Noffke N; Beukes N; Bower D; Hazen RM; Swift DJ
    Geobiology; 2008 Jan; 6(1):5-20. PubMed ID: 18380882
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Volcanogenic Pseudo-Fossils from the ∼3.48 Ga Dresser Formation, Pilbara, Western Australia.
    Wacey D; Noffke N; Saunders M; Guagliardo P; Pyle DM
    Astrobiology; 2018 May; 18(5):539-555. PubMed ID: 29461869
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Earth's earliest and deepest purported fossils may be iron-mineralized chemical gardens.
    McMahon S
    Proc Biol Sci; 2019 Dec; 286(1916):20192410. PubMed ID: 31771469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.