These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27312313)

  • 1. Weighted similarity-based clustering of chemical structures and bioactivity data in early drug discovery.
    Perualila-Tan NJ; Shkedy Z; Talloen W; Göhlmann HW; ; Moerbeke MV; Kasim A
    J Bioinform Comput Biol; 2016 Aug; 14(4):1650018. PubMed ID: 27312313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A joint modeling approach for uncovering associations between gene expression, bioactivity and chemical structure in early drug discovery to guide lead selection and genomic biomarker development.
    Perualila-Tan N; Kasim A; Talloen W; Verbist B; Göhlmann HW; ; Shkedy Z
    Stat Appl Genet Mol Biol; 2016 Aug; 15(4):291-304. PubMed ID: 27269248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitatively integrating molecular structure and bioactivity profile evidence into drug-target relationship analysis.
    Xu T; Zhu R; Liu Q; Cao Z
    BMC Bioinformatics; 2012 May; 13():75. PubMed ID: 22559876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breaking free from chemical spreadsheets.
    Segall M; Champness E; Leeding C; Chisholm J; Hunt P; Elliott A; Garcia-Martinez H; Foster N; Dowling S
    Drug Discov Today; 2015 Sep; 20(9):1093-103. PubMed ID: 26050579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weighted voting-based consensus clustering for chemical structure databases.
    Saeed F; Ahmed A; Shamsir MS; Salim N
    J Comput Aided Mol Des; 2014 Jun; 28(6):675-84. PubMed ID: 24830925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-view spectral clustering and its chemical application.
    Adefioye AA; Liu X; De Moor B
    Int J Comput Biol Drug Des; 2013; 6(1-2):32-49. PubMed ID: 23428472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing.
    Cao Y; Jiang T; Girke T
    Bioinformatics; 2010 Apr; 26(7):953-9. PubMed ID: 20179075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Programming for Evolving Similarity Functions for Clustering: Representations and Analysis.
    Lensen A; Xue B; Zhang M
    Evol Comput; 2020; 28(4):531-561. PubMed ID: 31599651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.
    Shi JY; Yiu SM; Li Y; Leung HC; Chin FY
    Methods; 2015 Jul; 83():98-104. PubMed ID: 25957673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collation and data-mining of literature bioactivity data for drug discovery.
    Bellis LJ; Akhtar R; Al-Lazikani B; Atkinson F; Bento AP; Chambers J; Davies M; Gaulton A; Hersey A; Ikeda K; Krüger FA; Light Y; McGlinchey S; Santos R; Stauch B; Overington JP
    Biochem Soc Trans; 2011 Oct; 39(5):1365-70. PubMed ID: 21936816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data mining a small molecule drug screening representative subset from NIH PubChem.
    Xie XQ; Chen JZ
    J Chem Inf Model; 2008 Mar; 48(3):465-75. PubMed ID: 18302356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Selection Based Semi-Supervised Clustering Ensemble for Tumor Clustering from Gene Expression Profiles.
    Yu Z; Chen H; You J; Wong HS; Liu J; Li L; Han G
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):727-40. PubMed ID: 26356343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.
    Lu J; Chen L; Yin J; Huang T; Bi Y; Kong X; Zheng M; Cai YD
    J Biomol Struct Dyn; 2016; 34(4):906-17. PubMed ID: 26849843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of chemical compound groups with common structures by a network analysis approach (affinity prediction method).
    Saito S; Hirokawa T; Horimoto K
    J Chem Inf Model; 2011 Jan; 51(1):61-8. PubMed ID: 21141943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening.
    Cortés-Ciriano I; Firth NC; Bender A; Watson O
    J Chem Inf Model; 2018 Sep; 58(9):2000-2014. PubMed ID: 30130102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel worlds of public and commercial bioactive chemistry data.
    Lipinski CA; Litterman NK; Southan C; Williams AJ; Clark AM; Ekins S
    J Med Chem; 2015 Mar; 58(5):2068-76. PubMed ID: 25415348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-supervised ensemble clustering algorithm for discovering relationships between different diseases by extracting cell-to-cell biological communications.
    Shi X; Yue C; Quan M; Li Y; Nashwan Sam H
    J Cancer Res Clin Oncol; 2024 Jan; 150(1):3. PubMed ID: 38168012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data mining the NCI cancer cell line compound GI(50) values: identifying quinone subtypes effective against melanoma and leukemia cell classes.
    Marx KA; O'Neil P; Hoffman P; Ujwal ML
    J Chem Inf Comput Sci; 2003; 43(5):1652-67. PubMed ID: 14502500
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.