These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 27312336)
21. Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. van Tol HM; Armbrust EV PLoS One; 2021; 16(3):e0241960. PubMed ID: 33760840 [TBL] [Abstract][Full Text] [Related]
22. Physiological responses of the diatoms Thalassiosira weissflogii and Thalassiosira pseudonana to nitrogen starvation and high light. Qiao H; Zang S; Yan F; Xu Z; Wang L; Wu H Mar Environ Res; 2021 Apr; 166():105276. PubMed ID: 33578138 [TBL] [Abstract][Full Text] [Related]
23. Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana. Kustka AB; Milligan AJ; Zheng H; New AM; Gates C; Bidle KD; Reinfelder JR New Phytol; 2014 Nov; 204(3):507-520. PubMed ID: 25046577 [TBL] [Abstract][Full Text] [Related]
24. Balancing the energy flow from captured light to biomass under fluctuating light conditions. Wagner H; Jakob T; Wilhelm C New Phytol; 2006; 169(1):95-108. PubMed ID: 16390422 [TBL] [Abstract][Full Text] [Related]
25. A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation. Jakob T; Wagner H; Stehfest K; Wilhelm C J Exp Bot; 2007; 58(8):2101-12. PubMed ID: 17483116 [TBL] [Abstract][Full Text] [Related]
26. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Savitch LV; Barker-Astrom J; Ivanov AG; Hurry V; Oquist G; Huner NP; Gardeström P Planta; 2001 Dec; 214(2):295-303. PubMed ID: 11800395 [TBL] [Abstract][Full Text] [Related]
27. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges. Yuan W; Gao G; Shi Q; Xu Z; Wu H Mar Environ Res; 2018 Apr; 135():63-69. PubMed ID: 29397992 [TBL] [Abstract][Full Text] [Related]
28. Acclimation of Haslea ostrearia to light of different spectral qualities - confirmation of 'chromatic adaptation' in diatoms. Mouget JL; Rosa P; Tremblin G J Photochem Photobiol B; 2004 Jul; 75(1-2):1-11. PubMed ID: 15246344 [TBL] [Abstract][Full Text] [Related]
29. Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. Nagao R; Ueno Y; Yokono M; Shen JR; Akimoto S Photosynth Res; 2019 Sep; 141(3):355-365. PubMed ID: 30993504 [TBL] [Abstract][Full Text] [Related]
30. Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana. Campbell DA; Hossain Z; Cockshutt AM; Zhaxybayeva O; Wu H; Li G Photosynth Res; 2013 May; 115(1):43-54. PubMed ID: 23504483 [TBL] [Abstract][Full Text] [Related]
31. The toxic mechanisms of BDE-47 to the marine diatom Thalassiosira pseudonana-a study based on multiple physiological processes. Zhao Y; Tang X; Quigg A; Lv M; Zhao Y Aquat Toxicol; 2019 Jul; 212():20-27. PubMed ID: 31039523 [TBL] [Abstract][Full Text] [Related]
32. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Thamatrakoln K; Korenovska O; Niheu AK; Bidle KD Environ Microbiol; 2012 Jan; 14(1):67-81. PubMed ID: 21453404 [TBL] [Abstract][Full Text] [Related]
33. Photosynthesis in estuarine intertidal microphytobenthos is limited by inorganic carbon availability. Vieira S; Cartaxana P; Máguas C; Marques da Silva J Photosynth Res; 2016 Apr; 128(1):85-92. PubMed ID: 26546444 [TBL] [Abstract][Full Text] [Related]
34. Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. Nymark M; Valle KC; Hancke K; Winge P; Andresen K; Johnsen G; Bones AM; Brembu T PLoS One; 2013; 8(3):e58722. PubMed ID: 23520530 [TBL] [Abstract][Full Text] [Related]
35. Reconciling models of primary production and photoacclimation [Invited]. Sathyendranath S; Platt T; Kovač Ž; Dingle J; Jackson T; Brewin RJW; Franks P; Marañón E; Kulk G; Bouman HA Appl Opt; 2020 Apr; 59(10):C100-C114. PubMed ID: 32400614 [TBL] [Abstract][Full Text] [Related]
37. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. Wagner H; Jakob T; Lavaud J; Wilhelm C Photosynth Res; 2016 May; 128(2):151-61. PubMed ID: 26650230 [TBL] [Abstract][Full Text] [Related]
38. Investigating mixotrophic metabolism in the model diatom Villanova V; Fortunato AE; Singh D; Bo DD; Conte M; Obata T; Jouhet J; Fernie AR; Marechal E; Falciatore A; Pagliardini J; Le Monnier A; Poolman M; Curien G; Petroutsos D; Finazzi G Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717014 [TBL] [Abstract][Full Text] [Related]
39. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom. Li W; Wang T; Campbell DA; Gao K Mar Environ Res; 2020 Sep; 160():104965. PubMed ID: 32291249 [TBL] [Abstract][Full Text] [Related]
40. Photosystem II photoinactivation, repair, and protection in marine centric diatoms. Wu H; Roy S; Alami M; Green BR; Campbell DA Plant Physiol; 2012 Sep; 160(1):464-76. PubMed ID: 22829321 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]