These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27312370)

  • 1. Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes.
    Fonseca-Berzal C; DA Silva CF; Menna-Barreto RF; Batista MM; Escario JA; Arán VJ; Gómez-Barrio A; Soeiro Mde N
    Parasitology; 2016 Sep; 143(11):1469-78. PubMed ID: 27312370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activities of psilostachyin A and cynaropicrin against Trypanosoma cruzi in vitro and in vivo.
    da Silva CF; Batista Dda G; De Araújo JS; Batista MM; Lionel J; de Souza EM; Hammer ER; da Silva PB; De Mieri M; Adams M; Zimmermann S; Hamburger M; Brun R; Schühly W; Soeiro Mde N
    Antimicrob Agents Chemother; 2013 Nov; 57(11):5307-14. PubMed ID: 23939901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi.
    Britta EA; Scariot DB; Falzirolli H; da Silva CC; Ueda-Nakamura T; Dias Filho BP; Borsali R; Nakamura CV
    Parasitology; 2015 Jun; 142(7):978-88. PubMed ID: 25711881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials.
    Londero VS; Costa-Silva TA; Tempone AG; Namiyama GM; Thevenard F; Antar GM; Baitello JB; Lago JHG
    Bioorg Chem; 2020 Jan; 95():103510. PubMed ID: 31884137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi.
    Rodrigues JH; Ueda-Nakamura T; Corrêa AG; Sangi DP; Nakamura CV
    PLoS One; 2014; 9(1):e85706. PubMed ID: 24465654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro activities of adamantylidene-substituted alkylphosphocholine TCAN26 against Trypanosoma cruzi: Antiproliferative and ultrastructural effects.
    Barrias E; Reignault LC; Calogeropoulou T; de Souza W
    Exp Parasitol; 2019 Nov; 206():107730. PubMed ID: 31494215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi.
    Pelizzaro-Rocha KJ; Veiga-Santos P; Lazarin-Bidóia D; Ueda-Nakamura T; Dias Filho BP; Ximenes VF; Silva SO; Nakamura CV
    Microbes Infect; 2011 Nov; 13(12-13):1018-24. PubMed ID: 21683800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity profile of two 5-nitroindazole derivatives over the moderately drug-resistant
    Fonseca-Berzal C; da Silva CF; Batista DDGJ; de Oliveira GM; Cumella J; Batista MM; Peres RB; Silva da Gama Nefertiti A; Escario JA; Gómez-Barrio A; Arán VJ; Soeiro MNC
    Parasitology; 2020 Sep; 147(11):1216-1228. PubMed ID: 32530391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo studies of the antiparasitic activity of sterol 14α-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi.
    Soeiro Mde N; de Souza EM; da Silva CF; Batista Dda G; Batista MM; Pavão BP; Araújo JS; Aiub CA; da Silva PB; Lionel J; Britto C; Kim K; Sulikowski G; Hargrove TY; Waterman MR; Lepesheva GI
    Antimicrob Agents Chemother; 2013 Sep; 57(9):4151-63. PubMed ID: 23774435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction.
    Menna-Barreto RF; Goncalves RL; Costa EM; Silva RS; Pinto AV; Oliveira MF; de Castro SL
    Free Radic Biol Med; 2009 Sep; 47(5):644-53. PubMed ID: 19501647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi.
    Menna-Barreto RF; Corrêa JR; Cascabulho CM; Fernandes MC; Pinto AV; Soares MJ; De Castro SL
    Parasitology; 2009 Apr; 136(5):499-510. PubMed ID: 19281638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors.
    Meira CS; Barbosa-Filho JM; Lanfredi-Rangel A; Guimarães ET; Moreira DR; Soares MB
    Exp Parasitol; 2016 Jul; 166():108-15. PubMed ID: 27080160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo studies of the trypanocidal activity of four terpenoid derivatives against Trypanosoma cruzi.
    Ramírez-Macías I; Marín C; Chahboun R; Messouri I; Olmo F; Rosales MJ; Gutierrez-Sánchez R; Alvarez-Manzaneda E; Sánchez-Moreno M
    Am J Trop Med Hyg; 2012 Sep; 87(3):481-8. PubMed ID: 22802442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological activity of the azlactone derivative EPA-35 against Trypanosoma cruzi.
    de Azeredo CM; Ávila EP; Pinheiro DL; Amarante GW; Soares MJ
    FEMS Microbiol Lett; 2017 Feb; 364(4):. PubMed ID: 28130370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of NAD+-dependent histone deacetylases (sirtuins) causes growth arrest and activates both apoptosis and autophagy in the pathogenic protozoan Trypanosoma cruzi.
    Veiga-Santos P; Reignault LC; Huber K; Bracher F; De Souza W; De Carvalho TM
    Parasitology; 2014 May; 141(6):814-25. PubMed ID: 24670415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial studies on mechanism of action and cell death of active N-oxide-containing heterocycles in Trypanosoma cruzi epimastigotes in vitro.
    Benítez D; Casanova G; Cabrera G; Galanti N; Cerecetto H; González M
    Parasitology; 2014 Apr; 141(5):682-96. PubMed ID: 24476762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi.
    Fernandes MC; Da Silva EN; Pinto AV; De Castro SL; Menna-Barreto RF
    Parasitology; 2012 Jan; 139(1):26-36. PubMed ID: 21939585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary evidence of the mechanisms of action of HIV aspartyl peptidase inhibitors on Trypanosoma cruzi trypomastigote forms.
    Sangenito LS; Menna-Barreto RFS; Oliveira AC; d'Avila-Levy CM; Branquinha MH; Santos ALS
    Int J Antimicrob Agents; 2018 Aug; 52(2):185-194. PubMed ID: 29635008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanocidal action of (-)-elatol involves an oxidative stress triggered by mitochondria dysfunction.
    Desoti VC; Lazarin-Bidóia D; Sudatti DB; Pereira RC; Alonso A; Ueda-Nakamura T; Dias Filho BP; Nakamura CV; De Oliveira Silva S
    Mar Drugs; 2012 Aug; 10(8):1631-1646. PubMed ID: 23015766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles.
    Bombaça ACS; Viana PG; Santos ACC; Silva TL; Rodrigues ABM; Guimarães ACR; Goulart MOF; da Silva Júnior EN; Menna-Barreto RFS
    Free Radic Biol Med; 2019 Jan; 130():408-418. PubMed ID: 30445126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.