BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27312415)

  • 1. Anatomical Basis of Dynamic Modulation of Tympanic Tension in the Water Monitor Lizard, Varanus salvator.
    Han D; Young BA
    Anat Rec (Hoboken); 2016 Sep; 299(9):1270-80. PubMed ID: 27312415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active tympanic tuning facilitates sound localization in animals with internally coupled ears.
    Vedurmudi AP; Young BA; van Hemmen JL
    Hear Res; 2020 Mar; 387():107861. PubMed ID: 31911335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical model of internally coupled ears.
    Vossen C; Christensen-Dalsgaard J; van Hemmen JL
    J Acoust Soc Am; 2010 Aug; 128(2):909-18. PubMed ID: 20707461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical influences on internally coupled ears in reptiles.
    Young BA
    Biol Cybern; 2016 Oct; 110(4-5):255-261. PubMed ID: 27699482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The function of the middle ear in lizards: Crotaphytus collaris (iguanidae).
    Wever EG; Werner YL
    J Exp Zool; 1970 Nov; 175(3):327-41. PubMed ID: 5478938
    [No Abstract]   [Full Text] [Related]  

  • 6. The anatomical basis of amphibious hearing in the American alligator (Alligator mississippiensis).
    Young BA; Cramberg M
    Anat Rec (Hoboken); 2024 Jan; 307(1):198-207. PubMed ID: 37259899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directionality of the lizard ear.
    Christensen-Dalsgaard J; Manley GA
    J Exp Biol; 2005 Mar; 208(Pt 6):1209-17. PubMed ID: 15767319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of single-ossicle ear flexibility and eardrum cone orientation on quasi-static behavior of the chicken middle ear.
    Muyshondt PGG; Aerts P; Dirckx JJJ
    Hear Res; 2019 Jul; 378():13-22. PubMed ID: 30482533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of the middle ear in lizards: divergent types.
    Wever EG
    J Exp Zool; 1973 Apr; 184(1):97-126. PubMed ID: 4695813
    [No Abstract]   [Full Text] [Related]  

  • 10. Modeling of the human middle ear using the finite-element method.
    Koike T; Wada H; Kobayashi T
    J Acoust Soc Am; 2002 Mar; 111(3):1306-17. PubMed ID: 11931308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of age and size in the ears of gekkonomorph lizards: middle-ear sensitivity.
    Werner YL; Igić PG; Seifan M; Saunders JC
    J Exp Biol; 2002 Oct; 205(Pt 20):3215-23. PubMed ID: 12235199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental study of vibration analysis in middle ear models by holographic interferometry. Effects of the cross-sectioned area of aditus on the vibration of tympanic membrane].
    Ishihara M
    Nihon Jibiinkoka Gakkai Kaiho; 1989 May; 92(5):726-35. PubMed ID: 2614565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound localization in the lizard using internally coupled ears: A finite-element approach.
    Livens P; Muyshondt PGG; Dirckx JJJ
    Hear Res; 2019 Jul; 378():23-32. PubMed ID: 30704801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume displacement of the tympanic membrane in the sitting position as a function of middle ear muscle activity. A quantitative microflow method.
    Casselbrant M; Ingelstedt S; Ivarsson A
    Acta Otolaryngol; 1977; 84(5-6):402-13. PubMed ID: 144403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tectorial membrane of the lizard ear: types of structure.
    Wever EG
    J Morphol; 1967 Aug; 122(4):307-19. PubMed ID: 6050989
    [No Abstract]   [Full Text] [Related]  

  • 16. Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear.
    Webster DB; Webster M
    J Morphol; 1975 Jul; 146(3):343-76. PubMed ID: 1142444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I.
    Williams KR; Lesser TH
    Br J Audiol; 1990 Oct; 24(5):319-27. PubMed ID: 2265302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative taxonomy and phylogeny-based species delimitation of Philippine water monitor lizards (Varanus salvator Complex) with descriptions of two new cryptic species.
    Welton LJ; Travers SL; Siler CD; Brown RM
    Zootaxa; 2014 Nov; 3881(3):201-27. PubMed ID: 25543631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota).
    Chaiprasertsri N; Uno Y; Peyachoknagul S; Prakhongcheep O; Baicharoen S; Charernsuk S; Nishida C; Matsuda Y; Koga A; Srikulnath K
    J Hered; 2013; 104(6):798-806. PubMed ID: 24129994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.