These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27312607)

  • 1. Structural modification of bacterial cellulose fibrils under ultrasonic irradiation.
    Paximada P; Dimitrakopoulou EA; Tsouko E; Koutinas AA; Fasseas C; Mandala IG
    Carbohydr Polym; 2016 Oct; 150():5-12. PubMed ID: 27312607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved characterization of nanofibers from bacterial cellulose and its potential application in fresh-cut apples.
    Zhai X; Lin D; Li W; Yang X
    Int J Biol Macromol; 2020 Apr; 149():178-186. PubMed ID: 31982531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin.
    Chen SQ; Cao X; Li Z; Zhu J; Li L
    Carbohydr Polym; 2020 Oct; 246():116632. PubMed ID: 32747267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of rheological and structural properties of bacterial cellulose fibrils and whey protein biocomposites on electrosprayed food-grade particles.
    Paximada P; Kanavou E; Mandala IG
    Carbohydr Polym; 2020 Aug; 241():116319. PubMed ID: 32507207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.
    Machado RTA; Gutierrez J; Tercjak A; Trovatti E; Uahib FGM; Moreno GP; Nascimento AP; Berreta AA; Ribeiro SJL; Barud HS
    Carbohydr Polym; 2016 Nov; 152():841-849. PubMed ID: 27516336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose.
    Wang X; Guo C; Hao W; Ullah N; Chen L; Li Z; Feng X
    Int J Biol Macromol; 2018 Oct; 118(Pt A):722-730. PubMed ID: 29944938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ultrasonic treatment on yield stress of highly concentrated cellulose nano-crystalline (CNC) aqueous suspensions.
    Zakani B; Grecov D
    Carbohydr Polym; 2022 Sep; 291():119651. PubMed ID: 35698354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between Suspension Properties and Fibril Structure of Disintegrated Bacterial Cellulose.
    Ougiya H; Watanabe K; Matsumura T; Yoshinaga F
    Biosci Biotechnol Biochem; 1998; 62(9):1714-9. PubMed ID: 27392683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology of regenerated cellulose suspension and influence of sodium alginate.
    Jiang Y; De La Cruz JA; Ding L; Wang B; Feng X; Mao Z; Xu H; Sui X
    Int J Biol Macromol; 2020 Apr; 148():811-816. PubMed ID: 31962069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.
    Pääkkö M; Ankerfors M; Kosonen H; Nykänen A; Ahola S; Osterberg M; Ruokolainen J; Laine J; Larsson PT; Ikkala O; Lindström T
    Biomacromolecules; 2007 Jun; 8(6):1934-41. PubMed ID: 17474776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological behavior of cellulose nanowhisker suspension under magnetic field.
    Kim DH; Song YS
    Carbohydr Polym; 2015 Aug; 126():240-7. PubMed ID: 25933545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial cellulose as a support for yeast immobilization - Correlation between carrier properties and process efficiency.
    Żywicka A; Banach A; Junka AF; Drozd R; Fijałkowski K
    J Biotechnol; 2019 Feb; 291():1-6. PubMed ID: 30579888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel bacterial cellulose membrane biosynthesized by a new and highly efficient producer Komagataeibacter rhaeticus TJPU03.
    He X; Meng H; Song H; Deng S; He T; Wang S; Wei D; Zhang Z
    Carbohydr Res; 2020 Jul; 493():108030. PubMed ID: 32442702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles.
    Amin MC; Abadi AG; Katas H
    Carbohydr Polym; 2014 Jan; 99():180-9. PubMed ID: 24274495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of cellulose in NaOH and NaOH/urea aqueous solutions by ultrasonic irradiation.
    Kojima Y; Takayasu M; Toma M; Koda S
    Ultrason Sonochem; 2019 Mar; 51():419-423. PubMed ID: 30072258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose composites loaded with SiO
    Sheykhnazari S; Tabarsa T; Ashori A; Ghanbari A
    Int J Biol Macromol; 2016 Dec; 93(Pt A):672-677. PubMed ID: 27637448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.