These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27312612)

  • 1. Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters.
    Singh M; Kaushik A; Ahuja D
    Carbohydr Polym; 2016 Oct; 150():48-56. PubMed ID: 27312612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization.
    Kaushik A; Singh M
    Carbohydr Res; 2011 Jan; 346(1):76-85. PubMed ID: 21094489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning.
    Montaño-Leyva B; Rodriguez-Felix F; Torres-Chávez P; Ramirez-Wong B; López-Cervantes J; Sanchez-Machado D
    J Agric Food Chem; 2011 Feb; 59(3):870-5. PubMed ID: 21207978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls.
    Alemdar A; Sain M
    Bioresour Technol; 2008 Apr; 99(6):1664-71. PubMed ID: 17566731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of contact active antibacterial surface based on chemically modified nanofibrillated cellulose by phenanthridinium silane salt.
    Hassanpour A; Asghari S; Mansour Lakouraj M; Mohseni M
    Int J Biol Macromol; 2018 Aug; 115():528-539. PubMed ID: 29581000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of microfibrillated cellulose and nanofibrillated cellulose with "biomechanical hotspots".
    Singh M; Pahal V; Ahuja D
    Carbohydr Polym; 2020 Apr; 234():115827. PubMed ID: 32070555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of long natural cellulose fibers from wheat straw.
    Reddy N; Yang Y
    J Agric Food Chem; 2007 Oct; 55(21):8570-5. PubMed ID: 17894459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw.
    Djafari Petroudy SR; Arjmand Kahagh S; Vatankhah E
    Carbohydr Polym; 2021 Jan; 251():117087. PubMed ID: 33142628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization.
    Kawee N; Lam NT; Sukyai P
    Carbohydr Polym; 2018 Jan; 179():394-401. PubMed ID: 29111066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of physical and functional properties of cellulose nanofibers isolated from alkaline pre-treated wheat straw in optimized hydrochloric acid and enzymatic processes.
    Ceaser R; Chimphango AFA
    Int J Biol Macromol; 2021 Feb; 171():331-342. PubMed ID: 33422512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates.
    Cunha AG; Freire CS; Silvestre AJ; Pascoal Neto C; Gandini A; Orblin E; Fardim P
    Biomacromolecules; 2007 Apr; 8(4):1347-52. PubMed ID: 17378606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles.
    Xiao S; Gao R; Lu Y; Li J; Sun Q
    Carbohydr Polym; 2015 Mar; 119():202-9. PubMed ID: 25563961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobization of nanofibrillated cellulose from Macaranga gigantea for binding of curcumin.
    Jamaluddin NAN; Jasmani L; Md Pisar M; Adnan S; Rusli R; Zakaria S
    Carbohydr Polym; 2024 Oct; 342():122405. PubMed ID: 39048240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of microcrystalline cellulose from roselle fibers.
    Kian LK; Jawaid M; Ariffin H; Alothman OY
    Int J Biol Macromol; 2017 Oct; 103():931-940. PubMed ID: 28549863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro release of fragrant l-carvone from electrospun poly(ϵ-caprolactone)/wheat cellulose scaffold.
    Ramamoorthy M; Rajiv S
    Carbohydr Polym; 2015 Nov; 133():328-36. PubMed ID: 26344288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-phobic cellulose fibers derivatives via surface trifluoropropanoylation.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A; Orblin E; Fardim P
    Langmuir; 2007 Oct; 23(21):10801-6. PubMed ID: 17854212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface esterification of cellulose nanofibers by a simple organocatalytic methodology.
    Ávila Ramírez JA; Suriano CJ; Cerrutti P; Foresti ML
    Carbohydr Polym; 2014 Dec; 114():416-423. PubMed ID: 25263909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.
    C S JC; George N; Narayanankutty SK
    Carbohydr Polym; 2016 May; 142():158-66. PubMed ID: 26917386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of ammonia and xylanase pretreatments: impact on enzymatic xylan and cellulose recovery from wheat straw.
    Rémond C; Aubry N; Crônier D; Noël S; Martel F; Roge B; Rakotoarivonina H; Debeire P; Chabbert B
    Bioresour Technol; 2010 Sep; 101(17):6712-7. PubMed ID: 20399643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.