BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27312635)

  • 1. NMR characterization of sodium carboxymethyl cellulose 2: Chemical shift assignment and conformation analysis of substituent groups.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Oct; 150():241-9. PubMed ID: 27312635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR characterization of sodium carboxymethyl cellulose: Substituent distribution and mole fraction of monomers in the polymer chains.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Aug; 146():1-9. PubMed ID: 27112844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR characterization of methylcellulose: Chemical shift assignment and mole fraction of monomers in the polymer chains.
    Kono H; Fujita S; Tajima K
    Carbohydr Polym; 2017 Feb; 157():728-738. PubMed ID: 27987985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of mole fractions of ethyl-cellulose-containing monomers by NMR.
    Kono H
    Carbohydr Res; 2017 Jun; 445():51-60. PubMed ID: 28402900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ¹H and ¹³C chemical shift assignment of the monomers that comprise carboxymethyl cellulose.
    Kono H
    Carbohydr Polym; 2013 Sep; 97(2):384-90. PubMed ID: 23911461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR characterization of cellulose acetate: Mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances.
    Kono H; Oka C; Kishimoto R; Fujita S
    Carbohydr Polym; 2017 Aug; 170():23-32. PubMed ID: 28521991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity.
    Kono H; Hashimoto H; Shimizu Y
    Carbohydr Polym; 2015 Mar; 118():91-100. PubMed ID: 25542112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy.
    Kono H
    Carbohydr Res; 2013 Jun; 375():136-44. PubMed ID: 23707362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substituent distribution of propyl cellulose studied by nuclear magnetic resonance.
    Kono H; Numata J
    Carbohydr Res; 2020 Sep; 495():108067. PubMed ID: 32739678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional NMR data of a series of methylcellulose with different degrees of substitution.
    Kono H
    Data Brief; 2018 Jun; 18():1088-1098. PubMed ID: 29900279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-destructive and direct determination of the degree of substitution of carboxymethyl cellulose by HR-MAS
    Ferro M; Castiglione F; Panzeri W; Dispenza R; Santini L; Karlsson HJ; de Wit PP; Mele A
    Carbohydr Polym; 2017 Aug; 169():16-22. PubMed ID: 28504132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The assignment of carbonyl resonances in 13C-n.m.r. spectra of peracetylated mono- and oligo-saccharides containing D-glucose and D-mannose: an alternative method for structural determination of complex carbohydrates.
    Goux WJ; Unkefer CJ
    Carbohydr Res; 1987 Feb; 159(2):191-210. PubMed ID: 3567984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formaldehyde formation during the preparation of dialdehyde carboxymethyl cellulose tanning agent.
    Yi Y; Jiang Z; Yang S; Ding W; Wang YN; Shi B
    Carbohydr Polym; 2020 Jul; 239():116217. PubMed ID: 32414428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size.
    Yeasmin MS; Mondal MI
    Int J Biol Macromol; 2015 Sep; 80():725-31. PubMed ID: 26210036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scanning electron microscope based new method for determining degree of substitution of sodium carboxymethyl cellulose.
    Singh RK; Khatri OP
    J Microsc; 2012 Apr; 246(1):43-52. PubMed ID: 22150298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structural analysis of carboxymethyl cellulose used as an antiadhesive material for surgical wound healing].
    Yamada K; Kinoshita M; Jo Y; Inoue T; Aoshima M; Hasegawa K; Sei K; Kita S; Kakehi K
    Yakugaku Zasshi; 2014; 134(11):1209-17. PubMed ID: 25366918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, characterization and in vitro evaluation of a novel thiolated polymer: preactivated carboxymethyl cellulose.
    Laffleur F; Bacher L; Netsomboon K
    Ther Deliv; 2016; 7(1):7-14. PubMed ID: 26652619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the DS distribution of non-degraded sodium carboxymethyl cellulose by gradient chromatography.
    Shakun M; Heinze T; Radke W
    Carbohydr Polym; 2013 Oct; 98(1):943-50. PubMed ID: 23987432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste.
    Mondal MI; Yeasmin MS; Rahman MS
    Int J Biol Macromol; 2015 Aug; 79():144-50. PubMed ID: 25936282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of carboxymethyl cellulose from office waste paper: a greener approach towards waste management.
    Joshi G; Naithani S; Varshney VK; Bisht SS; Rana V; Gupta PK
    Waste Manag; 2015 Apr; 38():33-40. PubMed ID: 25543195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.