These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 27312891)
1. Delivery strategies: RNA interference in agriculture and human health. Heidebrecht RW Pest Manag Sci; 2017 Apr; 73(4):686-691. PubMed ID: 27312891 [TBL] [Abstract][Full Text] [Related]
2. RNAi-mediated plant protection against aphids. Yu XD; Liu ZC; Huang SL; Chen ZQ; Sun YW; Duan PF; Ma YZ; Xia LQ Pest Manag Sci; 2016 Jun; 72(6):1090-8. PubMed ID: 26888776 [TBL] [Abstract][Full Text] [Related]
3. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942 [TBL] [Abstract][Full Text] [Related]
4. RNA interference: a promising technique for the improvement of traditional crops. Katoch R; Thakur N Int J Food Sci Nutr; 2013 Mar; 64(2):248-59. PubMed ID: 22861122 [TBL] [Abstract][Full Text] [Related]
5. Are small RNAs a big help to plants? Mao Y; Xue X; Chen X Sci China C Life Sci; 2009 Mar; 52(3):212-23. PubMed ID: 19294346 [TBL] [Abstract][Full Text] [Related]
6. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants. Katoch R; Thakur N Appl Biochem Biotechnol; 2013 Mar; 169(5):1579-605. PubMed ID: 23322250 [TBL] [Abstract][Full Text] [Related]
7. Using RNAi to improve plant nutritional value: from mechanism to application. Tang G; Galili G Trends Biotechnol; 2004 Sep; 22(9):463-9. PubMed ID: 15331227 [TBL] [Abstract][Full Text] [Related]
8. RNA interference: concept to reality in crop improvement. Saurabh S; Vidyarthi AS; Prasad D Planta; 2014 Mar; 239(3):543-64. PubMed ID: 24402564 [TBL] [Abstract][Full Text] [Related]
10. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting. Sherman JH; Munyikwa T; Chan SY; Petrick JS; Witwer KW; Choudhuri S Regul Toxicol Pharmacol; 2015 Nov; 73(2):671-80. PubMed ID: 26361858 [TBL] [Abstract][Full Text] [Related]
11. RNA interference in designing transgenic crops. Ali N; Datta SK; Datta K GM Crops; 2010; 1(4):207-13. PubMed ID: 21844675 [TBL] [Abstract][Full Text] [Related]
12. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Koch A; Kogel KH Plant Biotechnol J; 2014 Sep; 12(7):821-31. PubMed ID: 25040343 [TBL] [Abstract][Full Text] [Related]
13. Dealing with transgene flow of crop protection traits from crops to their relatives. Gressel J Pest Manag Sci; 2015 May; 71(5):658-67. PubMed ID: 24977384 [TBL] [Abstract][Full Text] [Related]
14. Crop improvement using small RNAs: applications and predictive ecological risk assessments. Auer C; Frederick R Trends Biotechnol; 2009 Nov; 27(11):644-51. PubMed ID: 19796832 [TBL] [Abstract][Full Text] [Related]
15. Improving RNAi efficiency for pest control in crop species. Yan S; Ren B; Zeng B; Shen J Biotechniques; 2020 May; 68(5):283-290. PubMed ID: 32202134 [TBL] [Abstract][Full Text] [Related]
16. Genetic modification in Malaysia and India: current regulatory framework and the special case of non-transformative RNAi in agriculture. Darsan Singh JK; Mat Jalaluddin NS; Sanan-Mishra N; Harikrishna JA Plant Cell Rep; 2019 Dec; 38(12):1449-1463. PubMed ID: 31350570 [TBL] [Abstract][Full Text] [Related]
17. RNAs - a new frontier in crop protection. Niu D; Hamby R; Sanchez JN; Cai Q; Yan Q; Jin H Curr Opin Biotechnol; 2021 Aug; 70():204-212. PubMed ID: 34217122 [TBL] [Abstract][Full Text] [Related]