These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27313196)

  • 1. A reexamination of the North American Crepis agamic complex and comparison with the findings of Babcock and Stebbins' classic biosystematic monograph.
    Sears CJ; Whitton J
    Am J Bot; 2016 Jul; 103(7):1289-99. PubMed ID: 27313196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of apomixis and polyploidy on diversification and geographic distribution in Amelanchier (Rosaceae).
    Burgess MB; Cushman KR; Doucette ET; Talent N; Frye CT; Campbell CS
    Am J Bot; 2014 Aug; 101(8):1375-87. PubMed ID: 25156985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shrinking genomes? Evidence from genome size variation in Crepis (Compositae).
    Enke N; Fuchs J; Gemeinholzer B
    Plant Biol (Stuttg); 2011 Jan; 13(1):185-93. PubMed ID: 21143740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular framework for understanding the phylogeny of Spiranthes (Orchidaceae), a cosmopolitan genus with a North American center of diversity.
    Dueck LA; Aygoren D; Cameron KM
    Am J Bot; 2014 Sep; 101(9):1551-71. PubMed ID: 25253714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending Dysploidy and Bidirectional Changes in Genome Size Accompanied
    Senderowicz M; Nowak T; Rojek-Jelonek M; Bisaga M; Papp L; Weiss-Schneeweiss H; Kolano B
    Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular phylogenetics of Amorpha (Fabaceae): an evaluation of monophyly, species relationships, and polyploid origins.
    Straub SC; Doyle JJ
    Mol Phylogenet Evol; 2014 Jul; 76():49-66. PubMed ID: 24631856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyploids increase overall diversity despite higher turnover than diploids in the Brassicaceae.
    Román-Palacios C; Molina-Henao YF; Barker MS
    Proc Biol Sci; 2020 Sep; 287(1934):20200962. PubMed ID: 32873209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing reticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae).
    Lo EY; Stefanović S; Dickinson TA
    Evolution; 2010 Dec; 64(12):3593-608. PubMed ID: 20561052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae).
    Wang N; McAllister HA; Bartlett PR; Buggs RJ
    Ann Bot; 2016 May; 117(6):1023-35. PubMed ID: 27072644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome size shifts: karyotype evolution in Crepis section Neglectoides (Asteraceae).
    Enke N; Kunze R; Pustahija F; Glöckner G; Zimmermann J; Oberländer J; Kamari G; Siljak-Yakovlev S
    Plant Biol (Stuttg); 2015 Jul; 17(4):775-86. PubMed ID: 25683604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution.
    Majure LC; Puente R; Griffith MP; Judd WS; Soltis PS; Soltis DE
    Am J Bot; 2012 May; 99(5):847-64. PubMed ID: 22539520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for reciprocal origins in Polypodium hesperium (Polypodiaceae): a fern model system for investigating how multiple origins shape allopolyploid genomes.
    Sigel EM; Windham MD; Pryer KM
    Am J Bot; 2014 Sep; 101(9):1476-85. PubMed ID: 25253708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae).
    Grusz AL; Windham MD; Pryer KM
    Am J Bot; 2009 Sep; 96(9):1636-45. PubMed ID: 21622350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homoploid hybrids are common but evolutionary dead ends, whereas polyploidy is not linked to hybridization in a group of Pyrenean saxifrages.
    Carnicero P; Kröll J; Schönswetter P
    Mol Phylogenet Evol; 2023 Mar; 180():107703. PubMed ID: 36632928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of plastid and nuclear variation among apomictic polyploids of Hieracium: evolutionary processes and taxonomic implications.
    Tyler T; Jönsson J
    Ann Bot; 2013 Apr; 111(4):591-609. PubMed ID: 23393094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of homoploid hybridization in evolution: a century of studies synthesizing genetics and ecology.
    Yakimowski SB; Rieseberg LH
    Am J Bot; 2014 Aug; 101(8):1247-58. PubMed ID: 25156978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haplotype variation of cpDNA in the agamic grass complex Pennisetum section Brevivalvula (Poaceae).
    Renno JF; Mariac C; Poteaux C; Bezançon G; Lumaret R
    Heredity (Edinb); 2001 May; 86(Pt 5):537-44. PubMed ID: 11554970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae).
    Fan X; Sha LN; Wang XL; Zhang HQ; Kang HY; Wang Y; Zhou YH
    Gene; 2013 Oct; 529(1):57-64. PubMed ID: 23911302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of recurrent evolution and geographic parthenogenesis within apomictic polyploid Easter daises (Townsendia hookeri).
    Thompson SL; Whitton J
    Mol Ecol; 2006 Oct; 15(11):3389-400. PubMed ID: 16968277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reticulate evolution in the Crepidomanes minutum species complex (Hymenophyllaceae).
    Nitta JH; Ebihara A; Ito M
    Am J Bot; 2011 Nov; 98(11):1782-800. PubMed ID: 22012924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.