These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Liebl J; Zhang S; Moser M; Agalarov Y; Demir CS; Hager B; Bibb JA; Adams RH; Kiefer F; Miura N; Petrova TV; Vollmar AM; Zahler S Nat Commun; 2015 Jun; 6():7274. PubMed ID: 26027726 [TBL] [Abstract][Full Text] [Related]
5. Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation. Sabine A; Petrova TV Adv Anat Embryol Cell Biol; 2014; 214():67-80. PubMed ID: 24276887 [TBL] [Abstract][Full Text] [Related]
6. eNOS Regulates Lymphatic Valve Specification by Controlling β-Catenin Signaling During Embryogenesis in Mice. Iyer D; Mastrogiacomo DM; Li K; Banerjee R; Yang Y; Scallan JP Arterioscler Thromb Vasc Biol; 2023 Nov; 43(11):2197-2212. PubMed ID: 37767708 [TBL] [Abstract][Full Text] [Related]
7. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Sabine A; Agalarov Y; Maby-El Hajjami H; Jaquet M; Hägerling R; Pollmann C; Bebber D; Pfenniger A; Miura N; Dormond O; Calmes JM; Adams RH; Mäkinen T; Kiefer F; Kwak BR; Petrova TV Dev Cell; 2012 Feb; 22(2):430-45. PubMed ID: 22306086 [TBL] [Abstract][Full Text] [Related]
8. YAP and TAZ maintain PROX1 expression in the developing lymphatic and lymphovenous valves in response to VEGF-C signaling. Cha B; Ho YC; Geng X; Mahamud MR; Chen L; Kim Y; Choi D; Kim TH; Randolph GJ; Cao X; Chen H; Srinivasan RS Development; 2020 Dec; 147(23):. PubMed ID: 33060128 [TBL] [Abstract][Full Text] [Related]
12. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. Sabine A; Bovay E; Demir CS; Kimura W; Jaquet M; Agalarov Y; Zangger N; Scallan JP; Graber W; Gulpinar E; Kwak BR; Mäkinen T; Martinez-Corral I; Ortega S; Delorenzi M; Kiefer F; Davis MJ; Djonov V; Miura N; Petrova TV J Clin Invest; 2015 Oct; 125(10):3861-77. PubMed ID: 26389677 [TBL] [Abstract][Full Text] [Related]
13. FOXC2 transcription factor: a novel regulator of lymphangiogenesis. Wu X; Liu NF Lymphology; 2011 Mar; 44(1):35-41. PubMed ID: 21667821 [TBL] [Abstract][Full Text] [Related]
14. Combining Foxc2 and Connexin37 deletions in mice leads to severe defects in lymphatic vascular growth and remodeling. Kanady JD; Munger SJ; Witte MH; Simon AM Dev Biol; 2015 Sep; 405(1):33-46. PubMed ID: 26079578 [TBL] [Abstract][Full Text] [Related]
15. Cdk5 and Foxc2--a new relationship in the lymphatic vasculature. Liebl J Oncotarget; 2015 Sep; 6(26):21799-801. PubMed ID: 26327394 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and mechanical signals in the lymphatic vasculature. Geng X; Ho YC; Srinivasan RS Cell Mol Life Sci; 2021 Aug; 78(16):5903-5923. PubMed ID: 34240226 [TBL] [Abstract][Full Text] [Related]
17. Diverse Functions of Retinoic Acid in Brain Vascular Development. Bonney S; Harrison-Uy S; Mishra S; MacPherson AM; Choe Y; Li D; Jaminet SC; Fruttiger M; Pleasure SJ; Siegenthaler JA J Neurosci; 2016 Jul; 36(29):7786-801. PubMed ID: 27445154 [TBL] [Abstract][Full Text] [Related]
18. Pharmacological inhibition of FOXO1 promotes lymphatic valve growth in a congenital lymphedema mouse model. Ogunsina O; Banerjee R; Knauer LA; Yang Y Front Cell Dev Biol; 2022; 10():1024628. PubMed ID: 36742198 [TBL] [Abstract][Full Text] [Related]
19. Identification of targets of Prox1 during in vitro vascular differentiation from embryonic stem cells: functional roles of HoxD8 in lymphangiogenesis. Harada K; Yamazaki T; Iwata C; Yoshimatsu Y; Sase H; Mishima K; Morishita Y; Hirashima M; Oike Y; Suda T; Miura N; Watabe T; Miyazono K J Cell Sci; 2009 Nov; 122(Pt 21):3923-30. PubMed ID: 19825936 [TBL] [Abstract][Full Text] [Related]