These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 27313587)
1. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock. Li H; Ahammed GJ; Zhou G; Xia X; Zhou J; Shi K; Yu J; Zhou Y Front Plant Sci; 2016; 7():746. PubMed ID: 27313587 [TBL] [Abstract][Full Text] [Related]
2. The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks. Li H; Wang F; Chen XJ; Shi K; Xia XJ; Considine MJ; Yu JQ; Zhou YH Physiol Plant; 2014 Nov; 152(3):571-84. PubMed ID: 24735050 [TBL] [Abstract][Full Text] [Related]
3. Luffa rootstock enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot. Guo Z; Qin Y; Lv J; Wang X; Dong H; Dong X; Zhang T; Du N; Piao F Environ Pollut; 2023 Jan; 316(Pt 1):120521. PubMed ID: 36309299 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Li H; Liu SS; Yi CY; Wang F; Zhou J; Xia XJ; Shi K; Zhou YH; Yu JQ Plant Cell Environ; 2014 Dec; 37(12):2768-80. PubMed ID: 24773056 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of heat stress resistance of cucumber leaves when grafted onto Momordica rootstock. Xu Y; Yuan Y; Du N; Wang Y; Shu S; Sun J; Guo S Hortic Res; 2018; 5():53. PubMed ID: 30302257 [TBL] [Abstract][Full Text] [Related]
6. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Liu S; Li H; Lv X; Ahammed GJ; Xia X; Zhou J; Shi K; Asami T; Yu J; Zhou Y Sci Rep; 2016 Feb; 6():20212. PubMed ID: 26832070 [TBL] [Abstract][Full Text] [Related]
7. Salicylic Acid Is Involved in Rootstock-Scion Communication in Improving the Chilling Tolerance of Grafted Cucumber. Fu X; Feng YQ; Zhang XW; Zhang YY; Bi HG; Ai XZ Front Plant Sci; 2021; 12():693344. PubMed ID: 34249065 [TBL] [Abstract][Full Text] [Related]
8. Rootstock Alleviates Salt Stress in Grafted Mulberry Seedlings: Physiological and PSII Function Responses. Zhang H; Li X; Zhang S; Yin Z; Zhu W; Li J; Meng L; Zhong H; Xu N; Wu Y; Sun GY Front Plant Sci; 2018; 9():1806. PubMed ID: 30619391 [TBL] [Abstract][Full Text] [Related]
9. Bitter Melon ( Tao MQ; Jahan MS; Hou K; Shu S; Wang Y; Sun J; Guo SR Plants (Basel); 2020 May; 9(6):. PubMed ID: 32485835 [TBL] [Abstract][Full Text] [Related]
10. Pepper Rootstock and Scion Physiological Responses Under Drought Stress. López-Serrano L; Canet-Sanchis G; Vuletin Selak G; Penella C; San Bautista A; López-Galarza S; Calatayud Á Front Plant Sci; 2019; 10():38. PubMed ID: 30745905 [TBL] [Abstract][Full Text] [Related]
11. The mechanisms by which phenanthrene affects the photosynthetic apparatus of cucumber leaves. Jin L; Che X; Zhang Z; Li Y; Gao H; Zhao S Chemosphere; 2017 Feb; 168():1498-1505. PubMed ID: 27939666 [TBL] [Abstract][Full Text] [Related]
12. Elucidating the role of key physio-biochemical traits and molecular network conferring heat stress tolerance in cucumber. Hongal DA; Raju D; Kumar S; Talukdar A; Das A; Kumari K; Dash PK; Chinnusamy V; Munshi AD; Behera TK; Dey SS Front Plant Sci; 2023; 14():1128928. PubMed ID: 36895870 [TBL] [Abstract][Full Text] [Related]
13. Ahammed GJ; Xu W; Liu A; Chen S Front Plant Sci; 2018; 9():998. PubMed ID: 30065736 [TBL] [Abstract][Full Text] [Related]
14. Microarray and genetic analysis reveals that csa-miR159b plays a critical role in abscisic acid-mediated heat tolerance in grafted cucumber plants. Li H; Wang Y; Wang Z; Guo X; Wang F; Xia XJ; Zhou J; Shi K; Yu JQ; Zhou YH Plant Cell Environ; 2016 Aug; 39(8):1790-804. PubMed ID: 27037862 [TBL] [Abstract][Full Text] [Related]
15. [Influence of over expression of CsRCA on photosynthesis of cucumber seedlings under high temperature stress.]. Bi HG; Dong XB; Liu PP; Li QM; Ai XZ Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2308-2314. PubMed ID: 29737140 [TBL] [Abstract][Full Text] [Related]
16. Elevated CO Pan C; Ahammed GJ; Li X; Shi K Front Plant Sci; 2018; 9():1739. PubMed ID: 30534134 [TBL] [Abstract][Full Text] [Related]
17. Coordinated impact of ion exclusion, antioxidants and photosynthetic potential on salt tolerance of ridge gourd [Luffa acutangula (L.) Roxb.]. Shahzadi AK; Bano H; Ogbaga CC; Ayyaz A; Parveen R; Zafar ZU; Athar HU; Ashraf M Plant Physiol Biochem; 2021 Oct; 167():517-528. PubMed ID: 34425396 [TBL] [Abstract][Full Text] [Related]
18. Physiology and metabolism of grafted bell pepper in response to low root-zone temperature. Aidoo MK; Sherman T; Lazarovitch N; Fait A; Rachmilevitch S Funct Plant Biol; 2019 Mar; 46(4):339-349. PubMed ID: 32172743 [TBL] [Abstract][Full Text] [Related]
19. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. He L; Yu L; Li B; Du N; Guo S BMC Plant Biol; 2018 Sep; 18(1):180. PubMed ID: 30180797 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms by which Bisphenol A affect the photosynthetic apparatus in cucumber (Cucumis sativus L.) leaves. Li YT; Liang Y; Li YN; Che XK; Zhao SJ; Zhang ZS; Gao HY Sci Rep; 2018 Mar; 8(1):4253. PubMed ID: 29523804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]