These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease. Zhu WM; Neuhaus A; Beard DJ; Sutherland BA; DeLuca GC Brain; 2022 Jul; 145(7):2276-2292. PubMed ID: 35551356 [TBL] [Abstract][Full Text] [Related]
45. Letting the little light of mind shine: Advances and future directions in neurochemical detection. Tjahjono N; Jin Y; Hsu A; Roukes M; Tian L Neurosci Res; 2022 Jun; 179():65-78. PubMed ID: 34861294 [TBL] [Abstract][Full Text] [Related]
46. Spontaneous Adenosine and Dopamine Cotransmission in the Caudate-Putamen Is Regulated by Adenosine Receptors. Borgus JR; Wang Y; DiScenza DJ; Venton BJ ACS Chem Neurosci; 2021 Dec; 12(23):4371-4379. PubMed ID: 34783243 [TBL] [Abstract][Full Text] [Related]
47. Spontaneous, transient adenosine release is not enhanced in the CA1 region of hippocampus during severe ischemia models. Ganesana M; Venton BJ J Neurochem; 2021 Dec; 159(5):887-900. PubMed ID: 34453336 [TBL] [Abstract][Full Text] [Related]
48. Neurovascular Coupling in Development and Disease: Focus on Astrocytes. Stackhouse TL; Mishra A Front Cell Dev Biol; 2021; 9():702832. PubMed ID: 34327206 [TBL] [Abstract][Full Text] [Related]
49. Amine-functionalized carbon-fiber microelectrodes for enhanced ATP detection with fast-scan cyclic voltammetry. Li Y; Weese ME; Cryan MT; Ross AE Anal Methods; 2021 May; 13(20):2320-2330. PubMed ID: 33960336 [TBL] [Abstract][Full Text] [Related]
50. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Hariharan A; Weir N; Robertson C; He L; Betsholtz C; Longden TA Front Cell Neurosci; 2020; 14():601324. PubMed ID: 33390906 [TBL] [Abstract][Full Text] [Related]
52. CD73 or CD39 Deletion Reveals Different Mechanisms of Formation for Spontaneous and Mechanically Stimulated Adenosine and Sex Specific Compensations in ATP Degradation. Wang Y; Copeland J; Shin M; Chang Y; Venton BJ ACS Chem Neurosci; 2020 Mar; 11(6):919-928. PubMed ID: 32083837 [TBL] [Abstract][Full Text] [Related]
53. Complex sex and estrous cycle differences in spontaneous transient adenosine. Borgus JR; Puthongkham P; Venton BJ J Neurochem; 2020 Apr; 153(2):216-229. PubMed ID: 32040198 [TBL] [Abstract][Full Text] [Related]
54. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Venton BJ; Cao Q Analyst; 2020 Feb; 145(4):1158-1168. PubMed ID: 31922176 [TBL] [Abstract][Full Text] [Related]
56. Electrochemistry at the Synapse. Shin M; Wang Y; Borgus JR; Venton BJ Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):297-321. PubMed ID: 30707593 [TBL] [Abstract][Full Text] [Related]
57. A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine. Morita K; Kawaguchi Y Front Neural Circuits; 2018; 12():111. PubMed ID: 30687019 [TBL] [Abstract][Full Text] [Related]
58. Comparison of spontaneous and mechanically-stimulated adenosine release in mice. Wang Y; Venton BJ Neurochem Int; 2019 Mar; 124():46-50. PubMed ID: 30579856 [TBL] [Abstract][Full Text] [Related]
59. Central and Peripheral Mechanisms Underlying Physiological and Drug-Induced Fluctuations in Brain Oxygen in Freely-Moving Rats. Kiyatkin EA Front Integr Neurosci; 2018; 12():44. PubMed ID: 30333733 [TBL] [Abstract][Full Text] [Related]
60. Caffeine Modulates Spontaneous Adenosine and Oxygen Changes during Ischemia and Reperfusion. Wang Y; Venton BJ ACS Chem Neurosci; 2019 Apr; 10(4):1941-1949. PubMed ID: 30252436 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]