These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27314275)

  • 1. Elucidation of the conformational dynamics of multi-body systems by construction of Markov state models.
    Zhu L; Sheong FK; Zeng X; Huang X
    Phys Chem Chem Phys; 2016 Nov; 18(44):30228-30235. PubMed ID: 27314275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems.
    Sheong FK; Silva DA; Meng L; Zhao Y; Huang X
    J Chem Theory Comput; 2015 Jan; 11(1):17-27. PubMed ID: 26574199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Markov State Models to simulate long timescale dynamics of biological macromolecules.
    Da LT; Sheong FK; Silva DA; Huang X
    Adv Exp Med Biol; 2014; 805():29-66. PubMed ID: 24446356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Markov state models provide insights into dynamic modulation of protein function.
    Shukla D; Hernández CX; Weber JK; Pande VS
    Acc Chem Res; 2015 Feb; 48(2):414-22. PubMed ID: 25625937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing multi-resolution Markov State Models (MSMs) to elucidate RNA hairpin folding mechanisms.
    Huang X; Yao Y; Bowman GR; Sun J; Guibas LJ; Carlsson G; Pande VS
    Pac Symp Biocomput; 2010; ():228-39. PubMed ID: 19908375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of the Dynamics of Transcription Elongation by RNA Polymerase II using Kinetic Network Models.
    Zhang L; Pardo-Avila F; Unarta IC; Cheung PP; Wang G; Wang D; Huang X
    Acc Chem Res; 2016 Apr; 49(4):687-94. PubMed ID: 26991064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing Kinetic Network Models to Elucidate Mechanisms of Functional Conformational Changes of Enzymes and Their Recognition with Ligands.
    Zhang L; Jiang H; Sheong FK; Pardo-Avila F; Cheung PP; Huang X
    Methods Enzymol; 2016; 578():343-71. PubMed ID: 27497174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating molecular mechanisms of functional conformational changes of proteins via Markov state models.
    Wang X; Unarta IC; Cheung PP; Huang X
    Curr Opin Struct Biol; 2021 Apr; 67():69-77. PubMed ID: 33126140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning.
    Konovalov KA; Unarta IC; Cao S; Goonetilleke EC; Huang X
    JACS Au; 2021 Sep; 1(9):1330-1341. PubMed ID: 34604842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the advantages of exploiting memory in Markov state models for biomolecular dynamics.
    Cao S; Montoya-Castillo A; Wang W; Markland TE; Huang X
    J Chem Phys; 2020 Jul; 153(1):014105. PubMed ID: 32640825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What Markov State Models Can and Cannot Do: Correlation versus Path-Based Observables in Protein-Folding Models.
    Suárez E; Wiewiora RP; Wehmeyer C; Noé F; Chodera JD; Zuckerman DM
    J Chem Theory Comput; 2021 May; 17(5):3119-3133. PubMed ID: 33904312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markov models of molecular kinetics: generation and validation.
    Prinz JH; Wu H; Sarich M; Keller B; Senne M; Held M; Chodera JD; Schütte C; Noé F
    J Chem Phys; 2011 May; 134(17):174105. PubMed ID: 21548671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Maximum-Caliber Approach to Predicting Perturbed Folding Kinetics Due to Mutations.
    Wan H; Zhou G; Voelz VA
    J Chem Theory Comput; 2016 Dec; 12(12):5768-5776. PubMed ID: 27951664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building Markov State Models for Periodically Driven Non-Equilibrium Systems.
    Wang H; Schütte C
    J Chem Theory Comput; 2015 Apr; 11(4):1819-31. PubMed ID: 26889513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Information Bottleneck Approach for Markov Model Construction.
    Wang D; Qiu Y; Beyerle ER; Huang X; Tiwary P
    ArXiv; 2024 Jun; ():. PubMed ID: 38947932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized Markov State Modeling Method for Nonequilibrium Biomolecular Dynamics: Exemplified on Amyloid β Conformational Dynamics Driven by an Oscillating Electric Field.
    Reuter B; Weber M; Fackeldey K; Röblitz S; Garcia ME
    J Chem Theory Comput; 2018 Jul; 14(7):3579-3594. PubMed ID: 29812922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markov state models of biomolecular conformational dynamics.
    Chodera JD; Noé F
    Curr Opin Struct Biol; 2014 Apr; 25():135-44. PubMed ID: 24836551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information Bottleneck Approach for Markov Model Construction.
    Wang D; Qiu Y; Beyerle ER; Huang X; Tiwary P
    J Chem Theory Comput; 2024 Jun; 20(12):5352-5367. PubMed ID: 38859575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.
    Rains EK; Andersen HC
    J Chem Phys; 2010 Oct; 133(14):144113. PubMed ID: 20949993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MasterMSM: A Package for Constructing Master Equation Models of Molecular Dynamics.
    de Sancho D; Aguirre A
    J Chem Inf Model; 2019 Sep; 59(9):3625-3629. PubMed ID: 31423789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.