These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 27314318)

  • 1. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of inlet geometry in microfluidic cell affinity chromatography.
    Li P; Tian Y; Pappas D
    Anal Chem; 2011 Feb; 83(3):774-81. PubMed ID: 21207967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
    Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F
    Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells.
    Chen D; Wen J; Zeng S; Ma H
    Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
    Zhang X; Zhu Z; Xiang N; Long F; Ni Z
    Anal Chem; 2018 Mar; 90(6):4212-4220. PubMed ID: 29493225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a low-cost magnetic microfluidic chip for circulating tumour cell capture.
    Xia J; Chen X; Zhou CZ; Li YG; Peng ZH
    IET Nanobiotechnol; 2011 Dec; 5(4):114-20. PubMed ID: 22149866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device.
    Qin L; Zhou W; Zhang S; Cheng B; Wang S; Li S; Yang Y; Wang S; Liu K; Zhang N
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1536-1541. PubMed ID: 30307854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Cell Separation Using Microfluidic-Based Cell Retention Device with Alternative Boosted Flow.
    Chen PH; Cheng YT; Ni BS; Huang JH
    Appl Biochem Biotechnol; 2020 May; 191(1):151-163. PubMed ID: 32086707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and analysis of geometric parameters based on Taguchi method in Y-Y microfluidic device for circulating tumor cell separation by alternating current dielectrophoresis.
    Lv B; Cai J
    J Chromatogr A; 2023 Mar; 1693():463894. PubMed ID: 36854211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips.
    Loessberg-Zahl J; van der Meer AD; van den Berg A; Eijkel JCT
    Lab Chip; 2019 Jan; 19(2):206-213. PubMed ID: 30548051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic technologies.
    Bhagat AA; Lim CT
    Recent Results Cancer Res; 2012; 195():59-67. PubMed ID: 22527494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.
    Gogoi P; Sepehri S; Chow W; Handique K; Wang Y
    Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells.
    Ohnaga T; Shimada Y; Moriyama M; Kishi H; Obata T; Takata K; Okumura T; Nagata T; Muraguchi A; Tsukada K
    Biomed Microdevices; 2013 Aug; 15(4):611-616. PubMed ID: 23666489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
    Didar TF; Tabrizian M
    Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphase flow experiment and simulation for cells-on-a-chip devices.
    Zhang M; Zheng A; Zheng ZC; Wang MZ
    Proc Inst Mech Eng H; 2019 Apr; 233(4):432-443. PubMed ID: 30929613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic devices to enrich and isolate circulating tumor cells.
    Myung JH; Hong S
    Lab Chip; 2015 Dec; 15(24):4500-11. PubMed ID: 26549749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays.
    Xue P; Wu Y; Guo J; Kang Y
    Biomed Microdevices; 2015 Apr; 17(2):39. PubMed ID: 25749640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.