These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
600 related articles for article (PubMed ID: 27314318)
1. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies. Sun YS Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318 [TBL] [Abstract][Full Text] [Related]
2. Comparison of inlet geometry in microfluidic cell affinity chromatography. Li P; Tian Y; Pappas D Anal Chem; 2011 Feb; 83(3):774-81. PubMed ID: 21207967 [TBL] [Abstract][Full Text] [Related]
3. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli. Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698 [TBL] [Abstract][Full Text] [Related]
4. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method. Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512 [TBL] [Abstract][Full Text] [Related]
5. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'. Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987 [TBL] [Abstract][Full Text] [Related]
6. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells. Chen D; Wen J; Zeng S; Ma H Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582 [TBL] [Abstract][Full Text] [Related]
7. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation. Zhang X; Zhu Z; Xiang N; Long F; Ni Z Anal Chem; 2018 Mar; 90(6):4212-4220. PubMed ID: 29493225 [TBL] [Abstract][Full Text] [Related]
8. Development of a low-cost magnetic microfluidic chip for circulating tumour cell capture. Xia J; Chen X; Zhou CZ; Li YG; Peng ZH IET Nanobiotechnol; 2011 Dec; 5(4):114-20. PubMed ID: 22149866 [TBL] [Abstract][Full Text] [Related]
9. Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device. Qin L; Zhou W; Zhang S; Cheng B; Wang S; Li S; Yang Y; Wang S; Liu K; Zhang N IEEE Trans Biomed Eng; 2019 Jun; 66(6):1536-1541. PubMed ID: 30307854 [TBL] [Abstract][Full Text] [Related]
10. Continuous Cell Separation Using Microfluidic-Based Cell Retention Device with Alternative Boosted Flow. Chen PH; Cheng YT; Ni BS; Huang JH Appl Biochem Biotechnol; 2020 May; 191(1):151-163. PubMed ID: 32086707 [TBL] [Abstract][Full Text] [Related]
11. Simulation and analysis of geometric parameters based on Taguchi method in Y-Y microfluidic device for circulating tumor cell separation by alternating current dielectrophoresis. Lv B; Cai J J Chromatogr A; 2023 Mar; 1693():463894. PubMed ID: 36854211 [TBL] [Abstract][Full Text] [Related]
12. Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips. Loessberg-Zahl J; van der Meer AD; van den Berg A; Eijkel JCT Lab Chip; 2019 Jan; 19(2):206-213. PubMed ID: 30548051 [TBL] [Abstract][Full Text] [Related]