These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27314324)

  • 41. Therapeutic nanostructures and nanotoxicity.
    Sarma A; Bania R; Devi JR; Deka S
    J Appl Toxicol; 2021 Oct; 41(10):1494-1517. PubMed ID: 33641187
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment.
    Bergamaschi E; Bussolati O; Magrini A; Bottini M; Migliore L; Bellucci S; Iavicoli I; Bergamaschi A
    Int J Immunopathol Pharmacol; 2006; 19(4 Suppl):3-10. PubMed ID: 17291399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Health effects of inhaled engineered and incidental nanoparticles.
    Madl AK; Pinkerton KE
    Crit Rev Toxicol; 2009; 39(8):629-58. PubMed ID: 19743943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoparticles: cellular uptake and cytotoxicity.
    Adjei IM; Sharma B; Labhasetwar V
    Adv Exp Med Biol; 2014; 811():73-91. PubMed ID: 24683028
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Is the brain protected from the impact of nanomaterial exposure?].
    Bencsik A
    Biol Aujourdhui; 2014; 208(2):159-65. PubMed ID: 25190575
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cytotoxicity of Nanomaterials: Using Nanotoxicology to Address the Safety Concerns of Nanoparticles.
    Saifi MA; Khan W; Godugu C
    Pharm Nanotechnol; 2018; 6(1):3-16. PubMed ID: 29065848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Compared in vivo toxicity in mice of lung delivered biodegradable and non-biodegradable nanoparticles.
    Aragao-Santiago L; Hillaireau H; Grabowski N; Mura S; Nascimento TL; Dufort S; Coll JL; Tsapis N; Fattal E
    Nanotoxicology; 2016; 10(3):292-302. PubMed ID: 26573338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoparticles: pharmacological and toxicological significance.
    Medina C; Santos-Martinez MJ; Radomski A; Corrigan OI; Radomski MW
    Br J Pharmacol; 2007 Mar; 150(5):552-8. PubMed ID: 17245366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biophysical characterization of nanoparticle-endothelial model cell membrane interactions.
    Peetla C; Labhasetwar V
    Mol Pharm; 2008; 5(3):418-29. PubMed ID: 18271547
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The toxicology of ion-shedding zinc oxide nanoparticles.
    Liu J; Feng X; Wei L; Chen L; Song B; Shao L
    Crit Rev Toxicol; 2016; 46(4):348-84. PubMed ID: 26963861
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium.
    Semmler-Behnke M; Takenaka S; Fertsch S; Wenk A; Seitz J; Mayer P; Oberdörster G; Kreyling WG
    Environ Health Perspect; 2007 May; 115(5):728-33. PubMed ID: 17520060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Current approaches for safer design of engineered nanomaterials.
    Hwang R; Mirshafiee V; Zhu Y; Xia T
    Ecotoxicol Environ Saf; 2018 Dec; 166():294-300. PubMed ID: 30273853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Health impact and toxicological effects of nanomaterials in the lung.
    Kendall M; Holgate S
    Respirology; 2012 Jul; 17(5):743-58. PubMed ID: 22449246
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Upconverting nanoparticles: assessing the toxicity.
    Gnach A; Lipinski T; Bednarkiewicz A; Rybka J; Capobianco JA
    Chem Soc Rev; 2015 Mar; 44(6):1561-84. PubMed ID: 25176037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive.
    Katsumiti A; Berhanu D; Howard KT; Arostegui I; Oron M; Reip P; Valsami-Jones E; Cajaraville MP
    Nanotoxicology; 2015; 9(5):543-53. PubMed ID: 25188678
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management.
    Warheit DB; Reed KL; Sayes CM
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():61-7. PubMed ID: 19558235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells.
    Hsiao IL; Huang YJ
    Sci Total Environ; 2011 Mar; 409(7):1219-28. PubMed ID: 21255821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier.
    Tosi G; Fano RA; Bondioli L; Badiali L; Benassi R; Rivasi F; Ruozi B; Forni F; Vandelli MA
    Nanomedicine (Lond); 2011 Apr; 6(3):423-36. PubMed ID: 21542682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combustion-derived nanoparticles: mechanisms of pulmonary toxicity.
    BéruBé K; Balharry D; Sexton K; Koshy L; Jones T
    Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1044-50. PubMed ID: 17714092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.