These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27314396)

  • 1. Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles through the Brain Blood Barrier: A Computational Approach.
    Pedram MZ; Shamloo A; Alasty A; Ghafar-Zadeh E
    Biosensors (Basel); 2016 Jun; 6(2):25. PubMed ID: 27314396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and simulation of crossing magnetic nanoparticles through blood brain barrier (BBB).
    Pedram MZ; Shamloo A; GhafarZadeh E; Alasty A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5280-3. PubMed ID: 25571185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for Glioblastoma multiforme treatment.
    Gkountas AA; Polychronopoulos ND; Sofiadis GN; Karvelas EG; Spyrou LA; Sarris IE
    Comput Methods Programs Biomed; 2021 Nov; 212():106477. PubMed ID: 34736172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning.
    Pedram MZ; Shamloo A; Alasty A; Ghafar-Zadeh E
    Sensors (Basel); 2015 Sep; 15(9):24409-27. PubMed ID: 26402686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-brain barrier crossing using magnetic stimulated nanoparticles.
    Chen J; Yuan M; Madison CA; Eitan S; Wang Y
    J Control Release; 2022 May; 345():557-571. PubMed ID: 35276300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier.
    Tosi G; Fano RA; Bondioli L; Badiali L; Benassi R; Rivasi F; Ruozi B; Forni F; Vandelli MA
    Nanomedicine (Lond); 2011 Apr; 6(3):423-36. PubMed ID: 21542682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier.
    Qiao R; Jia Q; Hüwel S; Xia R; Liu T; Gao F; Galla HJ; Gao M
    ACS Nano; 2012 Apr; 6(4):3304-10. PubMed ID: 22443607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Nanoparticles in the Central Nervous System: Targeting Principles, Applications and Safety Issues.
    D'Agata F; Ruffinatti FA; Boschi S; Stura I; Rainero I; Abollino O; Cavalli R; Guiot C
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29267188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superparamagnetic Iron Oxide Nanoparticles Modified with Tween 80 Pass through the Intact Blood-Brain Barrier in Rats under Magnetic Field.
    Huang Y; Zhang B; Xie S; Yang B; Xu Q; Tan J
    ACS Appl Mater Interfaces; 2016 May; 8(18):11336-41. PubMed ID: 27092793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI-guided epilepsy detection.
    Pedram MZ; Shamloo A; Alasty A; Ghafar-Zadeh E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4001-4. PubMed ID: 26737171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcellular Model for Neutral and Charged Nanoparticles Across an In Vitro Blood-Brain Barrier.
    Zhang L; Fan J; Li G; Yin Z; Fu BM
    Cardiovasc Eng Technol; 2020 Dec; 11(6):607-620. PubMed ID: 33113565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery.
    Tabatabaei SN; Girouard H; Carret AS; Martel S
    J Control Release; 2015 May; 206():49-57. PubMed ID: 25724273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted drug delivery to the brain using magnetic nanoparticles.
    Thomsen LB; Thomsen MS; Moos T
    Ther Deliv; 2015; 6(10):1145-55. PubMed ID: 26446407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier.
    Sun Z; Worden M; Wroczynskyj Y; Yathindranath V; van Lierop J; Hegmann T; Miller DW
    Int J Nanomedicine; 2014; 9():3013-26. PubMed ID: 25018630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model.
    Ivask A; Pilkington EH; Blin T; Käkinen A; Vija H; Visnapuu M; Quinn JF; Whittaker MR; Qiao R; Davis TP; Ke PC; Voelcker NH
    Biomater Sci; 2018 Jan; 6(2):314-323. PubMed ID: 29239410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier.
    Lu W; Tan YZ; Hu KL; Jiang XG
    Int J Pharm; 2005 May; 295(1-2):247-60. PubMed ID: 15848009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells.
    Kenzaoui BH; Bernasconi CC; Hofmann H; Juillerat-Jeanneret L
    Nanomedicine (Lond); 2012 Jan; 7(1):39-53. PubMed ID: 22191777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanobiotechnology-based strategies for crossing the blood-brain barrier.
    Jain KK
    Nanomedicine (Lond); 2012 Aug; 7(8):1225-33. PubMed ID: 22931448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle impacts reveal magnetic field induced agglomeration and reduced dissolution rates.
    Tschulik K; Compton RG
    Phys Chem Chem Phys; 2014 Jul; 16(27):13909-13. PubMed ID: 24898763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Nanoparticles as Targeted Carriers Circumventing the Blood-Brain Barrier.
    Sintov AC; Velasco-Aguirre C; Gallardo-Toledo E; Araya E; Kogan MJ
    Int Rev Neurobiol; 2016; 130():199-227. PubMed ID: 27678178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.